Log in

Critical Review of Microalgae LCA Studies for Bioenergy Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The cultivation of microalgae gained high attention within the last years because of their potential to substitute conventional bioenergy crops. To evaluate algal bioenergy production pathways already at an early stage, several life cycle assessment (LCA) studies have been performed, but their results and conclusions vary drastically. Against this background, this review gives a comparative analysis of 16 recent studies. To allow for a comparison, a meta-approach served to uniform the considered systems. System boundaries have been equalized and the energy return on investment (EROI) has been calculated for each study. Depending on the assumptions made on biomass productivity, lipid content, required energy, and the output of the system, the energetic performance was assessed. Large variations from 0.01 to 3.35 for the EROI could be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. More information on the CED values used in this analysis can be found in the supplementary information.

References

  1. Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy Elsevier 38:5892–5901. https://doi.org/10.1016/j.enpol.2010.05.043

    Article  Google Scholar 

  2. Dechema-Fachgruppe “Algenbiotechnologie.” (2016) Mikroalgen-Biotechnologie Gegenwärtiger Stand, Herausforderungen, Ziele

  3. Williams PJ l B, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554. https://doi.org/10.1039/b924978h

    Article  CAS  Google Scholar 

  4. Shaishav S, Satyendra T, Singh R (2013) Biohydrogen from algae: fuel of the future. Int Res J Environ Sci 2:44–47

    Google Scholar 

  5. Resurreccion EP, Colosi LM, White M a, Clarens AF (2012) Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour Technol Elsevier Ltd 126:298–306. https://doi.org/10.1016/j.biortech.2012.09.038

    Article  CAS  Google Scholar 

  6. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162. https://doi.org/10.4155/bfs.09.10

    Article  CAS  Google Scholar 

  7. Gerardo ML, Oatley-Radcliffe DL, Lovitt RW (2014) Minimizing the energy requirement of dewatering Scenedesmus sp. by microfiltration: performance, costs, and feasibility. Environ Sci Technol 48:845–853. https://doi.org/10.1021/es4051567

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Clarens AF, Colosi LM (2012) Algae biodiesel has potential despite inconclusive results to date. Bioresour Technol Elsevier Ltd 104:803–806. https://doi.org/10.1016/j.biortech.2011.10.077

    Article  CAS  Google Scholar 

  9. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy Elsevier Ltd 44:1–10. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  10. Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR et al (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1:83–92. https://doi.org/10.1016/j.algal.2012.02.003

    Article  CAS  Google Scholar 

  11. Liu J, Ma X (2009) The analysis on energy and environmental impacts of microalgae-based fuel methanol in China. Energ Policy 37:1479–1488. https://doi.org/10.1016/j.enpol.2008.12.010

    Article  Google Scholar 

  12. International Organization for Standardization. (2006) ISO 14040: environmental management—life cycle assessment—principles and framework; 2006

  13. Lardon L, Hélias A, Sialve B (2009) Life-cycle assessment of biodiesel production from microalgae. Foreign Policy Anal:6475–6481

  14. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology. Elsevier Ltd 101:1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

    Article  CAS  Google Scholar 

  15. Sevigné Itoiz E, Fuentes-Grünewald C, Gasol CM, Garcés E, Alacid E, Rossi S et al (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335. https://doi.org/10.1016/j.biombioe.2012.01.026

    Article  CAS  Google Scholar 

  16. Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol Elsevier Ltd 102:207–214. https://doi.org/10.1016/j.biortech.2010.06.154

    Article  CAS  Google Scholar 

  17. Yanfen L, Zehao H, **aoqian M (2012) Energy analysis and environmental impacts of microalgal biodiesel in China. Energ Policy 45:142–151. https://doi.org/10.1016/j.enpol.2012.02.007

    Article  Google Scholar 

  18. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol Elsevier Ltd 102:50–56. https://doi.org/10.1016/j.biortech.2010.06.048

    Article  CAS  Google Scholar 

  19. Clarens AF, Resurreccion EP, White M a, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819. https://doi.org/10.1021/es902838n

    Article  CAS  PubMed  Google Scholar 

  20. Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol Elsevier Ltd 102:5800–5807. https://doi.org/10.1016/j.biortech.2011.02.055

    Article  CAS  Google Scholar 

  21. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy Elsevier Ltd 88:3507–3514. https://doi.org/10.1016/j.apenergy.2010.12.052

    Article  CAS  Google Scholar 

  22. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714. https://doi.org/10.1007/s11367-010-0194-1

    Article  CAS  Google Scholar 

  23. Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott S a, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077. https://doi.org/10.1021/ef1003123

    Article  CAS  Google Scholar 

  24. Frank ED, Elgowainy A, Han J, Wang Z (2012) Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Chang 18:137–158. https://doi.org/10.1007/s11027-012-9395-1

    Article  Google Scholar 

  25. Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Life cycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy Elsevier Ltd 154:1062–1071. https://doi.org/10.1016/j.apenergy.2014.12.009

    Article  CAS  Google Scholar 

  26. Tredici MR, Bassi N, Prussi M, Biondi N, Rodolfi L, Chini Zittelli G et al (2015) Energy balance of algal biomass production in a 1-ha “Green Wall panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl Energy Elsevier Ltd 154:1103–1111. https://doi.org/10.1016/j.apenergy.2015.01.086

    Article  Google Scholar 

  27. Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework. Ambio 37:74–79. https://doi.org/10.1579/0044-7447(2008)37[74:EROITA]2.0.CO;2

    Article  PubMed  Google Scholar 

  28. Keoleian GA, Spitzley DV (2006) Life cycle based sustainability metrics. In: Abraham MA (ed) Sustainability Science and Engineering - Defining Principles, 1at ed. Elsevier B.V, pp 127–160

    Google Scholar 

  29. Kim S, Dale B (2003) Cumulative energy and global warming impact from the production of biomass for biobased products. J Ind Ecol 7:147–162. https://doi.org/10.1162/108819803323059442

    Article  CAS  Google Scholar 

  30. Bradley T, Maga D, Antón S (2015) Unified approach to life cycle assessment between three unique algae biofuel facilities. Appl Energy. https://doi.org/10.1016/j.apenergy.2014.12.087

  31. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresourc Technol Elsevier Ltd 102:35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  CAS  Google Scholar 

  32. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  33. Sills DL, Paramita V, Franke MJ, Johnson MC, Akabas TM, Greene CH et al (2013) Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environ Sci Technol 47:687–694. https://doi.org/10.1021/es3029236

    Article  CAS  PubMed  Google Scholar 

  34. Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC et al (2012) Environmental performance of algal biofuel technology options. Environ Sci Technol 46:2451–2459. https://doi.org/10.1021/es2026399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the project EnAlgae, a Strategic Initiative of the INTERREG IVB NWE Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Ketzer.

Additional information

Highlights

• System boundaries and processes were adapted in a meta-analysis

• Comparison of energy return on investment (EROI) was enabled

• Differences of results from 16 microalgal LCA studies, focusing on bioenergy, were identified

• Explanations for varying energy inputs and outputs were given and discussed

• Bottlenecks in algae-to-energy systems are summarized

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketzer, F., Skarka, J. & Rösch, C. Critical Review of Microalgae LCA Studies for Bioenergy Production. Bioenerg. Res. 11, 95–105 (2018). https://doi.org/10.1007/s12155-017-9880-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9880-1

Keywords

Navigation