Log in

DMS-MS separations with different transport gas modifiers

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

The current trend in analytical measurements is towards a new generation of mass spectrometry (MS) systems with enhanced sensitivity and high throughput of measurements. At the same time, increasing the sensitivity of MS can augment potential problems with isobaric interferences, which can reveal the undesirable effect of chemical noise on quality of analysis, particularly for quantitative measurements. Therefore, fast and effective methods of sample pretreatment which help to reduce the sample complexity are needed. Over the past decade it has been established that differential mobility spectrometry (DMS) can be employed as an effective pre-separation technique for atmospheric pressure ionization MS. DMS ion pre-filtering can improve simultaneously two vital parameters for mass spectrometry; signal to noise ratio and selectivity of MS measurement. In addition it was found that adding the appropriate amount of chemical modifiers to the transport gas can substantially enhance the resolving power of DMS. This valuable finding was immediately accepted and currently is exploited in commercial DMS-MS systems. The goal of this paper is to expand the understanding and systematization of the current knowledge related to augmentation of the separation power of DMS by adding chemical modifiers into the gas stream. This manuscript, reports systematic experimental data for a 140 chemicals mixture, measured within a DMS cell in the presence and absence of chemical modifiers. These data help to map out the behavior of chemical entities for different compositions of transport gases, including nitrogen, nitrogen/helium mixtures, and nitrogen with the addition of various polar and non-polar modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laphorn C, Pullen F, Chowdhry BZ (2012) Ion mobility spectrometry mass spectrometry of small molecules: separating and assigning structures to ions. Mass Spectrom Rev. doi:10.1002/mas.21349

  2. Hopfgartner G, Bourgogne E (2003) Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom Rev 22:195–214

    Article  CAS  Google Scholar 

  3. Bauer A, Kuster B (2003) Affinity purification-mass spectrometry. Eur J Biochem 270:570–578

    Article  CAS  Google Scholar 

  4. Wolters DA, Washburn MP, Yates JR III (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  Google Scholar 

  5. Wei J, Sun J, Yu W, Jones A, Oeller P, Keller M, Woodnutt G, Short JM (2005) Global proteome discovery using an online three-dimensional LC-MS/MS. J Proteome Res 4:801–808

    Article  CAS  Google Scholar 

  6. Hatsis P, Brockman AH, Wu JT (2007) Evaluation of high-field asymmetric waveform ion mobility spectrometry coupled to nanoelectrospray ionization for bioanalysis in drug discovery. Rappid Commun Mass Spectrom 21:2295–2300

    Article  CAS  Google Scholar 

  7. Jasak J, LeBlanc Y, Speer K, Billian P, Schoning RJ (2012) The analysis of triazole-based metabolites in plant materials using differential mobility spectrometry to improve LC-MS/MS selectivity. J AOAC INTERNATIONAL 95:1768–17769

    Article  CAS  Google Scholar 

  8. Baker ES, Livesay EA, Orton DJ, Moore RJ, Danielson WF III, Prior DC, Ibrahim YM, LaMarche BL, Mayampurath AM, Schepmoes AA, Hopkins DF, Tang K, Smith RD, Belov ME (2010) An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. J Proteome Res 9:997–1006

    Article  CAS  Google Scholar 

  9. Wu C, Siems W, Asbury GR, Hill HH Jr (1998) Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry. Anal Chem 70:4929–4938

    Article  CAS  Google Scholar 

  10. Dwivedi P, Wu C, Matz LM, Clowers BH, Siems WF, Hill HH (2006) Gas-phase chiral separations by ion mobility spectrometry. Anal Chem 78:8200–8206

    Article  CAS  Google Scholar 

  11. Eiceman G, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC Press, Taylor & Frances LLC, Boca Raton

    Book  Google Scholar 

  12. Shvartsburg AA (2008) Differential ion mobility: non-linear ion transport and fundamentals of FAIMS. CRC Group, Taylor and Francis LLC, Boca Raton

    Book  Google Scholar 

  13. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility mass spectrometry. J of Mass Spectrom 43:1–22

    Article  CAS  Google Scholar 

  14. Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differntial mobility spectrometry (DMS). Analyst 132:842–864

    Article  CAS  Google Scholar 

  15. Gorshkov MP (1982) Inventor’s certificate of USSR, No. 966583, G01N27/62

  16. Buryakov IA, Krylov EV, Makas AL, Nazarov EG, Pervukhin VV, Rasulev UK (1991) Separation of ions according to mobility in a strong AC electric field. Sov Tech Phys Lett 17:446–447

    Google Scholar 

  17. Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK (1993) A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Proc 128:143–148

    Article  CAS  Google Scholar 

  18. Covey TR, Schneider BB, LeBlanc Y, Nazarov EG (2012) Polar vapor enhanced separations with planar differential mobility spectrometry – mass spectrometry. Curr Trends Mass Spectrom. Supplement to LC-GC, Spectroscopy. July: 42–48

  19. Purves RW, Guevremont R (1999) Electrospray ionization high-field asymmetric waveform ion mobility spectrometry – mass spectrometry. Anal Chem 71:2346–2357

    Article  CAS  Google Scholar 

  20. Barnett DA, Belford M, Dunyach JJ, Purves RW (2007) Characterization of a temperature-controlled FAIMS system. J Am Soc Mass Spectrom 18:1653–1663

    Article  CAS  Google Scholar 

  21. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int J Mass Spectrom 298:45–54

    Article  CAS  Google Scholar 

  22. Shvartsburg AA, Li F, Tang K, Smith RD (2006) High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers. Anal Chem 78:3706–3714

    Article  CAS  Google Scholar 

  23. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York

    Book  Google Scholar 

  24. Shvartsburg AA, Bryskiewicz T, Purves RW, Tang K, Guevremont R, Smith RD (2006) Field asymmetric waveform ion mobility spectrometry studies of proteins: dipole alignment in ion mobility spectrometry? J Phys Chem B 110:21966–21980

    Article  CAS  Google Scholar 

  25. Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Pressure effects in differential mobility spectrometry. Anal Chem 78:7697–7706

    Article  CAS  Google Scholar 

  26. Eiceman GA, Krylov EV, Krylova NS, Nazarov EG, Miller RA (2004) Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem 76:4937–4944

    Article  CAS  Google Scholar 

  27. Levin DS, Vouros PA, Miller RA, Nazarov EG, Morris JC (2006) Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 78:96–106

    Article  CAS  Google Scholar 

  28. Rorrer LC III, Yost RA (2011) Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry. Int J Mass Spectrom 300:173–181

    Article  CAS  Google Scholar 

  29. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem 82:1867–1880

    Article  CAS  Google Scholar 

  30. Schneider BB, Nazarov EG, Covey TR (2012) Peak capacity in differential mobility spectrometry: effects of transport gas and gas modifiers. Int J Ion Mobil Spec 15:141–150

    Article  CAS  Google Scholar 

  31. Krylov EV, Nazarov EG, Miller RA (2007) Differential mobility spectrometer: model of operation. Int J Mass Spectrom 266:76–85

    Article  CAS  Google Scholar 

  32. Barnett DA, Ells B, Guevremont R, Purves RW, Viehland LA (2000) Evaluation of carrier gases for use in high-field asymmetric waveform ion mobility spectrometry. J Am Soc Mass Spectrom 11:1125–1133

    Article  CAS  Google Scholar 

  33. Shvartsburg AA, Tang K, Smith RD (2004) Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal Chem 76:7366–7374

    Article  CAS  Google Scholar 

  34. Shvartsburg AA, Smith RD (2011) Accelerated high-resolution differential ion mobility separations using hydrogen. Anal Chem 83:9159–9166

    Article  CAS  Google Scholar 

  35. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur J Mass Spectrom 16(1):57–71

    Article  CAS  Google Scholar 

  36. Shvartsburg AA, Danielson WF, Smith RD (2010) High-resolution differential ion mobility separations using helium-rich gases. Anal Chem 82:2456–2462

    Article  CAS  Google Scholar 

  37. Guevremont R (2004) A new tool for mass spectrometry. J Chrom A 1058:3–19

    CAS  Google Scholar 

  38. Zhang X, Fang A, Riley CP, Wang M, Regnier FE, Buck C (2010) Multi-dimensional liquid chromatography in proteomics. Anal Chim Acta 664:101–113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Deolinda Fernandes for preparing the samples used in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkinjon G. Nazarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, B.B., Covey, T.R. & Nazarov, E.G. DMS-MS separations with different transport gas modifiers. Int. J. Ion Mobil. Spec. 16, 207–216 (2013). https://doi.org/10.1007/s12127-013-0130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-013-0130-8

Keywords

Navigation