Log in

Insights into the Origin of Clostridium botulinum Strains: Evolution of Distinct Restriction Endonuclease Sites in rrs (16S rRNA gene)

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Diversity analysis of Clostridium botulinum strains is complicated by high microheterogeneity caused by the presence of 9–22 copies of rrs (16S rRNA gene). The need is to mine genetic markers to identify very closely related strains. Multiple alignments of the nucleotide sequences of the 212 rrs of 13 C. botulinum strains revealed intra- and inter-genomic heterogeneity. Low intragenomic heterogeneity in rrs was evident in strains 230613, Alaska E43, Okra, Eklund 17B, Langeland, 657, Kyoto, BKT015925, and Loch Maree. The most heterogenous rrs sequences were those of C. botulinum strains ATCC 19397, Hall, H04402065, and ATCC 3502. In silico restriction map** of these rrs sequences was observable with 137 type II Restriction endonucleases (REs). Nucleotide changes (NC) at these RE sites resulted in appearance of distinct and additional sites, and loss in certain others. De novo appearances of RE sites due to NC were recorded at different positions in rrs gene. A nucleotide transition A>G in rrs of C. botulinum Loch Maree and 657 resulted in the generation of 4 and 10 distinct RE sites, respectively. Transitions A>G, G>A, and T>C led to the loss of RE sites. A perusal of the entire NC and in silico RE map** of rrs of C. botulinum strains provided insights into their evolution. Segregation of strains on the basis of RE digestion patterns of rrs was validated by the cladistic analysis involving six house kee** genes: dnaN, gyrB, metG, prfA, pyrG, and Rho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070. doi:10.1001/jama.285.8.1059

    Article  CAS  PubMed  Google Scholar 

  2. Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189:818–832. doi:10.1128/JB.01180-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Editorial (2011) Microbiology by numbers. Nat Rev Microbiol 9:628

  4. Johnson EA, Tepp WH, Bradshaw M, Gilbert RJ, Cook PE, McIntosh ED (2005) Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom. J Clin Microbiol 43:2602–2607. doi:10.1128/JCM.43.6.2602-2607.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4:e4438. doi:10.1371/journal.pone.0004438

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N (2011) Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genom 12:18. doi:10.1186/1471-2164-12-18

    Article  CAS  Google Scholar 

  7. Peck MW (2009) Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55:183–2655. doi:10.1016/S0065-2911(09)05503-9

    Article  CAS  PubMed  Google Scholar 

  8. Ng V, Lin WJ (2014) Comparison of assembled Clostridium botulinum A1 genomes revealed their evolutionary relationship. Genomics 103:94–106. doi:10.1016/j.ygeno.2013.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hutson RA, Thompson DE, Lawson PA, Schocken-Itturino RP, Böttger EC, Collins (1993) Genetic interrelationships of proteolytic Clostridium botulinum type A, B, and F and other members of the Clostridium botulimun complex as revealed by small-subunit rRNA gene sequences. Antonie Van Leeuwenhoek 64:273–283. doi:10.1007/BF00873087

    Article  CAS  PubMed  Google Scholar 

  10. Skarin H, Hafstrom T, Westerberg J, Segerman B (2011) Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genom 12:185. doi:10.1186/1471-2164-12-185

    Article  CAS  Google Scholar 

  11. Verma V, Raju SC, Kapley A, Kalia VC, Daginawala HF, Purohit HJ (2010) Evaluation of genetic and functional diversity of Stenotrophomonas isolates from diverse effluent treatment plants. Bioresour Technol 101:7744–7753. doi:10.1016/j.biortech.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  12. Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol 53:253–263. doi:10.1007/s12088-013-0412-1

    Article  PubMed Central  PubMed  Google Scholar 

  13. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucl Acids Res 29:181–184. doi:10.1093/nar/29.1.181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucl Acids Res 38:D234–D236. doi:10.1093/nar/gkp874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999:95–98

    Google Scholar 

  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  17. **a X, **e Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373. doi:10.1093/jhered/92.4.371

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki Y, Takikawa N, Kojima A, Norimatsu M, Suzuki S, Tamura Y (2001) Phylogenetic positions of Clostridium novyi and Clostridium haemolyticum based on 16S rDNA sequences. Int J Syst Evol Microbiol 51:901–904. doi:10.1099/00207713-51-3-901

    Article  CAS  PubMed  Google Scholar 

  19. Felsenstein J, Phylip (Phylogeny Inference Package) version 3.57c. (1993) Department of Genetics, University of Washington, Seattle Distribution: http://evolution.genetics.washington.edu/phylip.html

  20. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computer. Comput Appl Biosci 12:357–358. doi:10.1093/bioinformatics/12.4.357

    CAS  PubMed  Google Scholar 

  21. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods). version 4.0.b10. Sinauer Associates, Sunderland, MA

  22. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, Heeb S, Schöck U, Pohl TM, Wiehlmann L, Tümmler B (2010) Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 192:1113–1121. doi:10.1128/JB.01515-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Nat Acad Sci USA 103:8487–8492. doi:10.1073/pnas.0602138103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dethlefsen L, Schmidt TM (2007) Performance of the translational apparatus varies with the ecological strategies of bacteria. J Bacteriol 189:3237–3245. doi:10.1128/JB.01686-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845. doi:10.1128/AEM.01726-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. López-López A, Benlloch S, Bonfá M, Rodríguez-Valera F, Mira A (2007) Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol 65:687–696. doi:10.1007/s00239-007-9047-3

    Article  PubMed  Google Scholar 

  27. Jensen S, Frost P, Torsvi V (2009) The nonrandom microheterogeneity of 16S rRNA genes in Vibrio splendidus may reflect adaptation to versatile life styles. FEMS Microbiol Lett 294:207–215. doi:10.1111/j.1574-6968.2009.01567

    Article  CAS  PubMed  Google Scholar 

  28. Stakenborg T, Vicca J, Butaye P, Maes D, De Baere T, Verhelst R, Peeters J, de Kruif A, Haesebrouck F, Vaneechoutte M (2005) Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species. BMC Inf Dis 5:46. doi:10.1186/1471-2334-5-46

    Article  Google Scholar 

  29. Saikia R, Sarma RK, Yadav A, Bora TC (2010) Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere. Curr Microbiol 62:434–444. doi:10.1007/s00284-010-9726-y

    Article  PubMed  Google Scholar 

  30. Mulet M, David Z, Nogales B, Bosch R, Lalucat J, García-Valdés E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the prestige oil spill. Appl Environ Microbiol 77:1076–1085. doi:10.1128/AEM.01741-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Suh Y, Vijg J (2005) SNP discovery in associating genetic variation with human disease phenotypes. Mutat Res 573:41–53. doi:10.1016/j.mrfmmm.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  32. Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V, Tonjum T, Sola C, Matic I, Gicquel B (2008) Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS ONE 3:1538. doi:10.1371/journal.pone.0001538

    Article  Google Scholar 

  33. Mestre O, Luo T, Dos Vultos T, Kremer K, Murray A, Namouchi A, Jackson C, Rauzier J, Bifani P, Warren R, Rasolofo V, Mei J, Gao Q, Gicquel B (2011) Phylogeny of Mycobacterium tuberculosis Bei**g strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair. Plus One 6:e16020. doi:10.1371/journal.pone.0016020

    Article  CAS  Google Scholar 

  34. Dötsch A, Pommerenke C, Bredenbruch F, Geffers R, Häussler S (2009) Evaluation of a microarray-hybridization based method applicable for discovery of single nucleotide polymorphisms (SNPs) in the Pseudomonas aeruginosa genome. BMC Genom 10:29. doi:10.1186/1471-2164-10-29

    Article  Google Scholar 

  35. Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, **e G, Brettin TS (2007) Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: boNT/A3,/Ba4 and/B1 clusters are located within plasmids. PLoS ONE 2:e1271. doi:10.1371/journal.pone.0001271

    Article  PubMed Central  PubMed  Google Scholar 

  36. Morris CE, Sands DC, Vanneste JL, Montarry J, Oakley B, Guilbaud C, Glaux C (2010) Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. MBio 1:e00107–e00110. doi:10.1128/mBio.00107-10

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), and CSIR project GENESIS (BSC0121) for providing the necessary funds, facilities and moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Bhushan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 793 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, A., Mukherjee, T., Joshi, J. et al. Insights into the Origin of Clostridium botulinum Strains: Evolution of Distinct Restriction Endonuclease Sites in rrs (16S rRNA gene). Indian J Microbiol 55, 140–150 (2015). https://doi.org/10.1007/s12088-015-0514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0514-z

Keywords

Navigation