Log in

How mutation shapes the rate of population spread in the presence of a mate-finding Allee effect

  • SI: Integro-Difference Equation Models in Ecology
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Although past work has considered how evolution and Allee effects each shape population spread, these factors have rarely been considered together. We develop an integrodifference equation model that tracks individuals of multiple dispersal types (i.e., short- and long-distance dispersers) of male and female individuals subject to a strong Allee effect due to mate-finding process. We use our model to explore how mutation between different dispersal types affects the rate of population spread, since this evolutionary mechanism has been shown to lead to both faster and slower spread in a previous individual-based model. We ask, under what conditions does mutation cause the population to spread faster (or slower) than it spreads without mutation (from the same initial conditions)? We find that mutation can both speed up and slow down invasions. Speeding up occurs in a relatively small range of parameter space near the Allee threshold of the population. Slowing down occurs across a broad range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Code Availability

Code is available from https://github.com/FrithjofL/LPS_Theoretical_Ecology.

References

  • Bénichou O, Calvez V, Meunier N, Voituriez R (2012) Front acceleration by dynamic selection in Fisher population waves. Phys Rev E 86(4):041908

    Article  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton KA, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2012) Costs of dispersal. Biol Rev 87(2):290–312

  • Bouin E, Calvez V (2014) Travelling waves for the cane toads equation with bounded traits. Nonlinearity 27(9):2233

    Article  Google Scholar 

  • Bouin E, Calvez V, Meunier N, Mirrahimi S, Perthame B, Raoul G, Voituriez R (2012) Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. CR Math 350(15–16):761–766

    Google Scholar 

  • Bouin E, Chan MH, Henderson C, Kim PS (2018) Influence of a mortality trade-off on the spreading rate of cane toads fronts. Comm Partial Differential Equations 43(11):1627–1671

    Article  Google Scholar 

  • Bouin E, Henderson C, Ryzhik L (2017) Super-linear spreading in local and non-local cane toads equations. Journal de mathématiques Pures et Appliquées 108(5):724–750

    Article  Google Scholar 

  • Bullock JM, Mallada González L, Tamme R, Götzenberger L, White SM, Pärtel M, Hooftman DAP (2017) A synthesis of empirical plant dispersal kernels. J Ecol 105(1):6–19

    Article  Google Scholar 

  • Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13(10):1210–1220

    Article  PubMed  Google Scholar 

  • Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci 101(4):975–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elliott EC, Cornell SJ (2013) Are anomalous invasion speeds robust to demographic stochasticity? PLoS ONE 8(7):e67871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gascoigne J, Berec L, Gregory S, Courchamp F (2009) Dangerously few liaisons: a review of mate-finding Allee effects. Popul Ecol 51(3):355–372

  • Girardin L (2017) Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior. Nonlinearity 31(1):108

    Article  Google Scholar 

  • Iida M, Lui R, Ninomiya H (2011) Stacked fronts for cooperative systems with equal diffusion coefficients. SIAM J Math Anal 43(3):1369–1389

    Article  Google Scholar 

  • Keenan VA, Cornell SJ (2021) Anomalous invasion dynamics due to dispersal polymorphism and dispersal-reproduction trade-offs. Proc R Soc B 288(1942):20202825

    Article  PubMed  PubMed Central  Google Scholar 

  • Korolev KS (2015) Evolution arrests invasions of cooperative populations. Phys Rev Lett 115(20):208104

    Article  PubMed  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042

    Article  Google Scholar 

  • Lui R (1989) Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math Biosci 93:269–295

    Article  PubMed  CAS  Google Scholar 

  • Lutscher F (2019) Integrodifference equations in spatial ecology. Springer

    Book  Google Scholar 

  • Marculis N, Lui R (2016) Modelling the biological invasion of carcinus maenas (the European green crab). J Biol Dyn 10(1):140–163

    Article  PubMed  Google Scholar 

  • Miller TE, Shaw AK, Inouye BD, Neubert MG (2011) Sex-biased dispersal and the speed of two-sex invasions. Am Nat 177(5):549–561

    Article  PubMed  Google Scholar 

  • Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Marculis NG, Melbourne BA, Shaw AK, Szücs M, Tabares O, Usui T, Weiss-Lehman C, Williams JL (2020) Eco-evolutionary dynamics of range expansion. Ecology 101(10):e03139

  • Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E (2012) Dispersal kernels: review. Dispersal ecology and evolution. Oxford University Press, Oxford, pp 185–248

    Google Scholar 

  • Perkins AT, Phillips BL, Baskett ML, Hastings A (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol Lett 16(8):1079–1087

    Article  PubMed  Google Scholar 

  • Phillips BL (2015) Evolutionary processes make invasion speed difficult to predict. Biol Invasions 17(7):1949–1960

    Article  Google Scholar 

  • Phillips BL, Brown GP, Travis JMJ, Shine R (2008) Reid’s paradox revisited: the evolution of dispersal kernels during range expansion. Am Nat 172:S34–S48

    Article  PubMed  Google Scholar 

  • Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439(7078):803

    Article  PubMed  CAS  Google Scholar 

  • Ramanantoanina A, Ouhinou A, Hui C (2014) Spatial assortment of mixed propagules explains the acceleration of range expansion. PLoS ONE 9(8):e103409

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw AK, Kokko H (2015) Dispersal evolution in the presence of Allee effects can speed up or slow down invasions. Am Nat 185(5):631–639

    Article  PubMed  Google Scholar 

  • Shaw AK, Kokko H, Neubert MG (2018) Sex difference and Allee effects shape the dynamics of sex-structured invasions. J Anim Ecol 87(1):36–46

    Article  PubMed  Google Scholar 

  • Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci 108(14):5708–5711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Travis JMJ, Dytham C (2002) Dispersal evolution during invasions. Evol Ecol Res 4:1119–1129

    Google Scholar 

  • Travis JMJ, Mustin K, Benton TG, Dytham C (2009) Accelerating invasion rates result from the evolution of density-dependent dispersal. J Theor Biol 259:151–158

    Article  PubMed  Google Scholar 

  • Veit RR, Lewis MA (1996) Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. Am Nat 148(2):255–274

    Article  Google Scholar 

  • Wang M-H, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44:150–168

    Article  PubMed  Google Scholar 

  • Weinberger HF (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13:353–396

    Article  Google Scholar 

  • Weinberger H, Lewis M, Li B (2007) Anomalous spreading speeds of cooperative recursion systems. J Math Biol 55:207–222

    Article  PubMed  Google Scholar 

  • Williams JL, Snyder RE, Levine JM (2016) The influence of evolution on population spread through patchy landscapes. Am Nat 188(1):15–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

FL is grateful for teaching release through the UOttawa–CRM membership agreement (Fall 2020). AKS is grateful for a sabbatical leave from the University of Minnesota to l’Université de Montréal with support from Fulbright Canada.

Funding

FL and LP are funded by Discovery Grants program from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-0495 and RGPIN-2015-06573).

Author information

Authors and Affiliations

Authors

Contributions

AKS conceived of the topic; FL derived the model and performed the analysis; all authors discussed the results; FL and AKS wrote the initial draft; all authors discussed and edited the manuscript.

Corresponding author

Correspondence to Frithjof Lutscher.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All persons entitled to authorship have been so named. The authors have approved the submission of this manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutscher, F., Popovic, L. & Shaw, A.K. How mutation shapes the rate of population spread in the presence of a mate-finding Allee effect. Theor Ecol 16, 255–269 (2023). https://doi.org/10.1007/s12080-022-00540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-022-00540-2

Keywords

Navigation