Log in

The endothelial tip-stalk cell selection and shuffling during angiogenesis

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Angiogenesis is a critical, fine-tuned, multi-staged biological process. Tip-stalk cell selection and shuffling are the building blocks of sprouting angiogenesis. Accumulated evidences show that tip-stalk cell selection and shuffling are regulated by a variety of physical, chemical and biological factors, especially the interaction among multiple genes, their products and environments. The classic Notch-VEGFR, Slit-Robo, ECM-binding integrin, semaphorin and CCN family play important roles in tip-stalk cell selection and shuffling. In this review, we outline the progress and prospect in the mechanism and the roles of the various molecules and related signaling pathways in endothelial tip-stalk cell selection and shuffling. In the future, the regulators of tip-stalk cell selection and shuffling would be the potential markers and targets for angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adada MM et al (2015) Intracellular sphingosine kinase 2-derived sphingosine-1-phosphate mediates epidermal growth factor-induced ezrin-radixin-moesin phosphorylation and cancer cell invasion. FASEB J 29(11):4654–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam MG et al (2013) Synaptojanin-2 binding protein stabilizes the notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res 113(11):1206–1218

    Article  CAS  PubMed  Google Scholar 

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  CAS  PubMed  Google Scholar 

  • Basile JR, Gavard J, Gutkind JS (2007) Plexin-B1 utilizes RhoA and rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem 282(48):34888–34895

    Article  CAS  PubMed  Google Scholar 

  • Belair DG et al (2016) Human iPSC-derived endothelial cell sprouting assay in synthetic hydrogel arrays. Acta Biomater 39:12–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedito R et al (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484(7392):110–114

    Article  CAS  PubMed  Google Scholar 

  • Benn A et al (2017) Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence. FASEB J 31(11):4720–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley K, Gerhardt H, Bates PA (2008) Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol 250(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Bentley K et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16(4):309–321

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boareto M et al (2015) Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proc Natl Acad Sci U S A 112(29):E3836–E3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes RP et al (2016) The cytosolic NADPH oxidase subunit NoxO1 promotes an endothelial stalk cell phenotype. Arterioscler Thromb Vasc Biol 36(8):1558–1565

    Article  CAS  PubMed  Google Scholar 

  • Butler GS et al (2017) Degradomic and yeast 2-hybrid inactive catalytic domain substrate trap** identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2). Matrix Biol 59:23–38

    Article  CAS  PubMed  Google Scholar 

  • Cantelmo AR, Brajic A, Carmeliet P (2015) Endothelial metabolism driving angiogenesis: emerging concepts and principles. Cancer J 21(4):244–249

    Article  CAS  PubMed  Google Scholar 

  • Carlier A et al (2012) MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput Biol 8(10):e1002724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. nature 407(6801):249

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P et al (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6(6):315–326

    Article  CAS  PubMed  Google Scholar 

  • Carra S et al (2018) Zebrafish Tmem230a cooperates with the Delta/notch signaling pathway to modulate endothelial cell number in angiogenic vessels. J Cell Physiol 233(2):1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41(4):771–783

    Article  CAS  PubMed  Google Scholar 

  • Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477

    Article  CAS  PubMed  Google Scholar 

  • Chintala H et al (2015) The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and notch signaling. Development 142(13):2364–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang J-Y et al (2015) WISP-1, a novel angiogenic regulator of the CCN family, promotes oral squamous cell carcinoma angiogenesis through VEGF-A expression. Oncotarget 6(6):4239–4252

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa G et al (2016) Asymmetric division coordinates collective cell migration in angiogenesis. Nat Cell Biol 18(12):1292–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang LTH et al (2017) Hyperactive FOXO1 results in lack of tip stalk identity and deficient microvascular regeneration during kidney injury. Biomaterials 141:314–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bock K et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663

    Article  CAS  PubMed  Google Scholar 

  • De Smet F et al (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29(5):639–649

    Article  CAS  PubMed  Google Scholar 

  • Delgado VM et al (2011) Modulation of endothelial cell migration and angiogenesis: a novel function for the "tandem-repeat" lectin galectin-8. FASEB J 25(1):242–254

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Akt takes center stage in angiogenesis signaling. Circ Res 86(1):4–5

    Article  CAS  PubMed  Google Scholar 

  • Eelen G et al (2013) Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 24(12):589–596

    Article  CAS  PubMed  Google Scholar 

  • Eelen G et al (2018) Endothelial cell metabolism. Physiol Rev 98(1):3–58

    Article  CAS  PubMed  Google Scholar 

  • Estrach S et al (2011) Laminin-binding integrins induce Dll4 expression and notch signaling in endothelial cells. Circ Res 109(2):172–182

    Article  CAS  PubMed  Google Scholar 

  • Fantin A et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121:2352–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29(6 Suppl 16):10–14

    Article  CAS  PubMed  Google Scholar 

  • Fischer RS et al (2018) Filopodia and focal adhesions: an integrated system driving branching morphogenesis in neuronal pathfinding and angiogenesis. Dev Biol

  • Fish JE et al (2017) Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 144(13):2428–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushi J-i, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and α3β1 integrin. Mol Biol Cell 15(8):3580–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gately S, Li WW (2004) Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31(2 Suppl 7):2–11

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138(21):4569–4583

    Article  CAS  PubMed  Google Scholar 

  • Gimenez F et al (2015) Robo 4 counteracts angiogenesis in herpetic stromal keratitis. PLoS One 10(12):e0141925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellström M, Phng L-K, Gerhardt H (2007) VEGF and notch signaling. Cell Adhes Migr 1(3):133–136

    Article  Google Scholar 

  • Henrot P et al (2018) CCN proteins as potential actionable targets in scleroderma. Exp Dermatol

  • Herbert SP, Stainier DYR (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H et al (2017) Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 36(16):2334–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953

    Article  CAS  PubMed  Google Scholar 

  • Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10(12):945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kangsamaksin T, Tattersall IW, Kitajewski J (2014) Notch functions in developmental and tumour angiogenesis by diverse mechanisms. Biochem Soc Trans 42(6):1563–1568

    Article  CAS  PubMed  Google Scholar 

  • Kangsamaksin T et al (2015) NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5(2):182–197

  • Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B et al (2017) Glutamine fuels proliferation but not migration of endothelial cells. EMBO J 36(16):2321–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Stolarska MA, Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106(2):353–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura T et al (2008) Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nat Cell Biol 10(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Koch AW et al (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Koch S et al (2014) NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. Dev Cell 28(6):633–646

    Article  CAS  PubMed  Google Scholar 

  • Kofler NM et al (2011) Notch signaling in developmental and tumor angiogenesis. Genes Cancer 2(12):1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Takigawa M (2007) CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Lai Y et al (2011) Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway. Int J Biol Sci 7(6):782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100(6):782–794

    Article  CAS  PubMed  Google Scholar 

  • Lamont RE et al (2016) The LIM-homeodomain transcription factor Islet2a promotes angioblast migration. Dev Biol 414(2):181–192

    Article  CAS  PubMed  Google Scholar 

  • Lebrand C et al (2004) Critical role of Ena/VASP proteins for Filopodia formation in neurons and in function downstream of Netrin-1. Neuron 42(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2016) Neuropilin-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. J Exp Clin Cancer Res 35(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CF et al (2016) WISP-1 promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-300 in human oral squamous cell carcinoma cells. in Oncotarget

  • Lin C-Y et al (2017) WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget 8(24):39571–39581

    PubMed  PubMed Central  Google Scholar 

  • Mahabeleshwar GH et al (2007) Mechanisms of integrin–vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101(6):570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder S et al (2016) G-protein-coupled Receptor-2-interacting Protein-1 controls stalk cell fate by Inhibiting Delta-like 4-Notch1 signaling. Cell Rep 17(10):2532–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moya IM et al (2012) Stalk cell phenotype depends on integration of notch and SMAD1/5 signaling cascades. Dev Cell 22(3):501–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasawa-Masuda A, Terai K (2016) ERK activation in endothelial cells is a novel marker during neovasculogenesis. Genes Cells 21(11):1164–1175

    Article  CAS  PubMed  Google Scholar 

  • Nedvetsky PI et al (2016) cAMP-dependent protein kinase a (PKA) regulates angiogenesis by modulating tip cell behavior in a notch-independent manner. Development 143(19):3582–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YS et al (2015) CCN1 secreted by tonsil-derived mesenchymal stem cells promotes endothelial cell angiogenesis via integrin αvβ3 and AMPK. J Cell Physiol 230(1):140–149

    Article  CAS  PubMed  Google Scholar 

  • Peghaire C et al (2016) Fzd7 (Frizzled-7) expressed by endothelial cells controls blood vessel formation through Wnt/beta-catenin canonical signaling. Arterioscler Thromb Vasc Biol 36(12):2369–2380

    Article  CAS  PubMed  Google Scholar 

  • Pitulescu ME et al (2017) Dll4 and notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927

    Article  CAS  PubMed  Google Scholar 

  • Poggio P et al (2011) Osteopontin controls endothelial cell migration in vitro and in excised human valvular tissue from patients with calcific aortic stenosis and controls. J Cell Physiol 226(8):2139–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  • Prokopiou SA et al (2016) Integrative modeling of sprout formation in angiogenesis: coupling the VEGFA-Notch signaling in a dynamic stalk-tip cell selection. ar**v preprint ar**v:1606.02167

  • Rao G, Du L, Chen Q (2013) Osteopontin, a possible modulator of cancer stem cells and their malignant niche. Oncoimmunology 2(5):e24169

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravelli C et al (2015) beta3 integrin promotes long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by immobilized ligand. Arterioscler Thromb Vasc Biol 35(10):2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley AJ et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  CAS  PubMed  Google Scholar 

  • Sainson RC et al (2008) TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111(10):4997–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schober JM et al (2002) Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99(12):4457–4465

    Article  CAS  PubMed  Google Scholar 

  • Schoors S et al (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520(7546):192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra M et al (2012) Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood 120(19):4104–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon H et al (2009) Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 23(2):513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng S, Qiao M, Pardee AB (2009) Metastasis and AKT activation. J Cell Physiol 218(3):451–454

    Article  CAS  PubMed  Google Scholar 

  • Shin M et al (2016) Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 143(20):3796–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoqvist M, Andersson ER (2017) Do as I say, Not(ch) as I do: lateral control of cell fate. Dev Biol

  • So JH et al (2010) Gicerin/Cd146 is involved in zebrafish cardiovascular development and tumor angiogenesis. Genes Cells 15(11):1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Tamagnone L (2012) Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. Cancer Cell 22(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    Article  CAS  PubMed  Google Scholar 

  • Tammela T et al (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signalling. Nat Cell Biol 13(10):1202–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toomey DP, Murphy JF, Conlon KC (2009) COX-2, VEGF and tumour angiogenesis. Surgeon 7(3):174–180

    Article  CAS  PubMed  Google Scholar 

  • Tsai H-C et al (2017) WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death &Amp; Disease, 8: p. e2750

  • Venkatraman L, Regan ER, Bentley K (2016) Time to decide? Dynamical analysis predicts partial tip/stalk patterning states Arise during angiogenesis. PLoS One 11(11):e0166489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weavers H, Skaer H (2014) Tip cells: master regulators of tubulogenesis? Semin Cell Dev Biol 31(100):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein N et al (2017) A network model to explore the effect of the micro-environment on endothelial cell behavior during angiogenesis. Front Physiol 8:960

    Article  PubMed  PubMed Central  Google Scholar 

  • Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Worzfeld T, Offermanns S (2014) Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov 13(8):603–621

    Article  CAS  PubMed  Google Scholar 

  • Xu C et al (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758

    Article  CAS  PubMed  Google Scholar 

  • Yang YH et al (2011) Plexin-B1 activates NF-kappaB and IL-8 to promote a pro-angiogenic response in endothelial cells. PLoS One 6(10):e25826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota Y et al (2015) Endothelial ca 2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. Elife 4

  • Yoshikawa M et al (2013) Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood 121(14):2804–2813

    Article  CAS  PubMed  Google Scholar 

  • Zarkada G et al (2015) VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc Natl Acad Sci U S A 112(3):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecchin A et al (2017) How endothelial cells adapt their metabolism to form vessels in tumors. Front Immunol 8:1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2015) The Matricellular protein Cyr61 is a key mediator of platelet-derived growth factor-induced cell migration. J Biol Chem 290(13):8232–8242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wu G, Dai H (2016) The matricellular protein CCN1 regulates TNF-α induced vascular endothelial cell apoptosis. Cell Biol Int 40(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Groopman JE, Wang JF (2004) Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin α5β1. J Cell Physiol 202(1):205–214

    Article  CAS  Google Scholar 

  • Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 31201052, 81802815). We thank Man Lu and Huiyu Li for polishing the manuscript.

Author information

Authors

Corresponding authors

Correspondence to **aoling Zhang or Lisha Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., **a, P., Wang, H. et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J. Cell Commun. Signal. 13, 291–301 (2019). https://doi.org/10.1007/s12079-019-00511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-019-00511-z

Keywords

Navigation