Log in

Stochastic programming technique for portfolio optimization with minimax risk and bounded parameters

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In this paper a portfolio optimization problem with bounded parameters is proposed taking into consideration the minimax risk measure, in which liquidity of the stocks is allied with selection of the portfolio. Interval uncertainty of the model is dealt with through a fusion between interval and random variable. As a result of this, the interval inequalities are converted to chance constraints. A solution methodology is developed using this concept to obtain an efficient portfolio. The theoretical developments are illustrated on a large data set taken from National Stock Exchange, India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Markowitz H 1952 Portfolio selection. J. Finance 7(1): 77–91

    Google Scholar 

  2. Markowitz H 1959 Portfolio selection: efficient diversification of investments. New York: Wiley

    Google Scholar 

  3. Konno H and Wijayanayake A 2001 Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math. Program. 89(2): 233–250

    Article  MathSciNet  MATH  Google Scholar 

  4. Kellerer H, Mansini R and Speranza M G 2000 Selecting portfolios with fixed costs and minimum transaction lots. Ann. Oper. Res. 99(1–4): 287–304

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang Y, Lai K K and Wang S Y 2006 Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur. J. Oper. Res. 175(2): 879–893

    Article  MATH  Google Scholar 

  6. Choi U J, Jang B G and Koo H K 2007 An algorithm for optimal portfolio selection problem with transaction costs and random lifetimes. Appl. Math. Comput. 191(1): 239–252

    MathSciNet  MATH  Google Scholar 

  7. Glen J J 2011 Mean–variance portfolio rebalancing with transaction costs and funding changes. J. Oper. Res. Soc. 62(4): 667–676

    Article  Google Scholar 

  8. Zhang W G, Zhang X and Chen Y 2011 Portfolio adjusting optimization with added assets and transaction costs based on credibility measures. Insur. Math. Econ. 49(3): 353–360

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang X, Zhang W G and Cai R 2010 Portfolio adjusting optimization under credibility measures. J. Comput. Appl. Math. 234(5): 1458–1465

    Article  MathSciNet  MATH  Google Scholar 

  10. Woodside-Oriakhi M, Lucas C and Beasley J 2013 Portfolio rebalancing with an investment horizon and transaction costs. Omega 41(2): 406–420

    Article  Google Scholar 

  11. Mao J C 1970 Models of capital budgeting, EV vs ES. J. Finan. Quant. Anal. 4(05): 657–675

    Article  Google Scholar 

  12. Konno H and Yamazaki H 1991 Mean–absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manage. Sci. 37(5): 519–531

    Article  Google Scholar 

  13. Simaan Y 1997 Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model. Manage. Sci. 43(10): 1437–1446

    Article  Google Scholar 

  14. Chunhachinda P, Dandapani K, Hamid S and Prakash A J 1997 Portfolio selection and skewness: evidence from international stock markets. J. Bank. Finance 21(2): 143–167

    Article  Google Scholar 

  15. Konno H and Suzuki K I 1995 A mean–variance–skewness portfolio optimization model. J. Oper. Res. Soc. Jpn. 38(2): 173–187

    Article  MATH  Google Scholar 

  16. Konno H and Shirakawa H 1994 Equilibrium relations in a capital asset market: a mean absolute deviation approach. Finance Eng. Jpn. Markets 1(1): 21–35

    Article  MATH  Google Scholar 

  17. Grootveld H and Hallerbach W 1999 Variance vs downside risk: is there really that much difference? Eur. J. Oper. Res. 114(2): 304–319

    Article  MATH  Google Scholar 

  18. Jansen D W, Koedijk K G and de Vries C G 2000 Portfolio selection with limited downside risk. J. Empirical Finance 7(1): 247–269 (special issue on Risk Management)

  19. Yang J and Qiu W 2005 A measure of risk and a decision-making model based on expected utility and entropy. Eur. J. Oper. Res. 164(3): 792–799

    Article  MathSciNet  MATH  Google Scholar 

  20. Young M R 1998 A minimax portfolio selection rule with linear programming solution. Manag. Sci. 44(5): 673–683

    Article  MATH  Google Scholar 

  21. Cai X, Teo K L, Yang X and Zhou X Y 2000 Portfolio optimization under a minimax rule. Manag. Sci. 46(7): 957–972

    Article  MATH  Google Scholar 

  22. Teo K and Yang X 2001 Portfolio selection problem with minimax type risk function. Ann. Oper. Res. 101(1–4): 333–349

    Article  MathSciNet  MATH  Google Scholar 

  23. Deng X T, Li Z F and Wang S Y 2005 A minimax portfolio selection strategy with equilibrium. Eur. J. Oper. Res. 166(1): 278–292

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu Z W, Song X F, Xu Y Y and Liu K 2009 A note on a minimax rule for portfolio selection and equilibrium price system. Appl. Math. Comput. 208(1): 49–57

    MathSciNet  MATH  Google Scholar 

  25. Sharma A and Mehra A 2013 Portfolio selection with a minimax measure in safety constraint. Optimization 62(11): 1473–1500

    Article  MathSciNet  MATH  Google Scholar 

  26. Ida M 2003 Portfolio selection problem with interval coefficients. Appl. Math. Lett. 16: 709–713

    Article  MathSciNet  MATH  Google Scholar 

  27. Lai K, Wang S, Xu J, Zhu S and Fang Y 2002 A class of linear interval programming problems and its application to portfolio selection. IIEE Trans. Fuzzy Syst. 10: 698–704

    Article  Google Scholar 

  28. Giove S, Funari S and Nardelli C 2006 An interval portfolio selection problem based on regret function. Eur. J. Oper. Res. 170(1): 253–264

    Article  MATH  Google Scholar 

  29. Liu S T 2011 The mean–absolute deviation portfolio selection problem with interval-valued returns. J. Comput. Appl. Math. 235: 4149–4157

    Article  MathSciNet  MATH  Google Scholar 

  30. Tan M 2012 Interval number model for portfolio selection with liquidity constraints. In: Fuzzy engineering and operations research, vol. 147. Berlin–Heidelberg: Springer, pp. 31–39

    Chapter  Google Scholar 

  31. Liu Y J, Zhang W G and Zhang P 2013 A multi-period portfolio selection optimization model by using interval analysis. Econ. Model. 33(0): 113–119

    Article  Google Scholar 

  32. Wu M, Kong D W, Xu J P and Huang N J 2013 On interval portfolio selection problem. Fuzzy Optim. Decis. Ma. 12(3): 289–304

    Article  MathSciNet  Google Scholar 

  33. Kumar P, Panda G and Gupta U C 2015 Portfolio rebalancing model with transaction costs using interval optimization. Opsearch 52(4): 827–860

    Article  MathSciNet  MATH  Google Scholar 

  34. Kumar P, Panda G and Gupta U C 2013 Generalized quadratic programming problem with interval uncertainty. In: Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–7

  35. Kumar P, Panda G and Gupta U C 2016 An interval linear programming approach for portfolio selection model. Int. J. Oper. Res. 27(1–2): 149–164

    Article  MathSciNet  MATH  Google Scholar 

  36. Bhurjee A K, Kumar P and Panda G 2015 Optimal range of Sharpe ratio of a portfolio model with interval parameters. J. Inf. Optim. Sci. 36(4): 367–384

    MathSciNet  Google Scholar 

  37. Markov S 1979 Calculus for interval functions of a real variable. Computing 22(4): 325–337

    Article  MathSciNet  MATH  Google Scholar 

  38. Yan X S 2008 Liquidity, investment style, and the relation between fund size and fund performance. J. Financ. Quant. Anal. 43: 741–767

    Article  Google Scholar 

  39. Kumar P and Panda G 2017 Solving nonlinear interval optimization problem using stochastic programming technique. Opsearch 54(4): 752–765

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their comments and suggestions that led the paper into the current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Panda, G. & Gupta, U.C. Stochastic programming technique for portfolio optimization with minimax risk and bounded parameters. Sādhanā 43, 149 (2018). https://doi.org/10.1007/s12046-018-0902-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0902-2

Keywords

Navigation