Log in

Approximate technique for solving fractional variational problems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The purpose of this paper is to suggest a numerical technique to solve fractional variational problems (FVPs). These problems are based on Caputo fractional derivatives. Rayleigh–Ritz method is used in this technique. First we approximate the objective function by the trapezoidal rule. Then, the unknown function is expanded in terms of the Bernstein polynomials. By this method, a system of algebraic equations is driven. We provide examples to show the effectiveness of this technique, which is considered in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R Hilfer, J. Phys. Chem. B 104, 3914 (2000)

    Article  Google Scholar 

  2. A A Kilbas, H M Srivastava and J J Trujillo, Theory and applications of fractional differential equations, in: North-Holland mathematics studies (Elsevier Science B.V., Amsterdam, 2006) Vol. 204

  3. I Podlubny, Fractional differential equations (Academic Press, Inc, San Diego, CA, 1999)

    MATH  Google Scholar 

  4. S G Samko, A A Kilbasa and O I Marichev, Fractional integrals and derivatives theory and applications (Gordon and Breach, New York, 1993)

    Google Scholar 

  5. A H Bhrawy, T M Taha and J A T Machado, Nonlinear Dyn81, 1023 (2015)

    Article  Google Scholar 

  6. H Jafari and H Tajadodi, UPB Sci. Bull. Ser. A 76, 115 (2014)

    Google Scholar 

  7. H Jafari and H Tajadodi, IJMC  7, 19 (2016)

    Google Scholar 

  8. Y Jiang and J Ma, J. Comput. Appl. Math. 235, 3285 (2011)

    Article  MathSciNet  Google Scholar 

  9. L Wang, Y Ma and Z Meng, Appl. Math. Comput227, 66 (2014)

    MathSciNet  Google Scholar 

  10. S A Yousefi, M Behroozifar and M Dehghan, J. Comput. Appl. Math235, 5272 (2011)

    Article  MathSciNet  Google Scholar 

  11. B Kaur and R K Gupta, Pramana – J. Phys93: 59 (2019)

    Article  ADS  Google Scholar 

  12. G Yel and H M Bakonus, Pramana – J. Phys. 93: 57 (2019)

    Google Scholar 

  13. O Agrawal, J. Math. Anal. Appl. 272, 368 (2002)

    Article  MathSciNet  Google Scholar 

  14. R Almeida, A Malinowska and D Torres, J. Math. Phys.  51, 033503 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. R Biswas and S Sen, J. Vib. Control 17, 1043 (2010)

    Google Scholar 

  16. D Mozyrska and D Torres, Carpathian J. Math. 26, 210 (2010)

    MathSciNet  Google Scholar 

  17. F Riewe, Phys. Rev. 53, 1890 (1996)

    ADS  MathSciNet  Google Scholar 

  18. F Riewe, Phys. Rev55, 3581 (1997)

    ADS  MathSciNet  Google Scholar 

  19. M Dehghan and M Tatari, Math. Probl. Eng. 2006, Article ID 65379 (2006)

  20. S S Ezz-Eldien, J. Comput. Phys. 317(15), 362 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. S S Ezz-Eldien, R M Hafez, A H Bhrawy, D Baleanu and A A El-Kalaawy, J. Opt. Theory Appl.  17, 295 (2017)

    Article  Google Scholar 

  22. A Lotfi and S A Yousefi, J. Comput. Appl. Math. 237, 633 (2013)

    Article  MathSciNet  Google Scholar 

  23. M M Khader and A S Hendy, Math. Meth. Appl. Sci. 36, 1281 (2013)

    Article  Google Scholar 

  24. M Dehghan, E Hamedi and H Khosravian-Arab, J. Vib. Control 22, 1547 (2016)

    Article  MathSciNet  Google Scholar 

  25. M M Khader, Appl. Math. Model. 39, 1643 (2015)

    Article  MathSciNet  Google Scholar 

  26. E Kreyszig, Introductory functional analysis with applications (John Wiley and Sons Inc, New York, 1978)

    MATH  Google Scholar 

  27. S A Yousefi and M Behroozifar, Int. J. Syst. Sci. 41, 709 (2010)

    Article  Google Scholar 

  28. O Agrawal, J. Vib. Control 13, 1217 (2007)

    Article  MathSciNet  Google Scholar 

  29. Y Ordokhani and P Rahimkhani, J. Appl. Math. Comput., DOI: https://doi.org/10.1007/s12190-017-1134-z

  30. S Jahanshahi and D F M Torres, J. Opt. Theory Appl. 174, 156 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajadodi, H., Kadkhoda, N., Jafari, H. et al. Approximate technique for solving fractional variational problems. Pramana - J Phys 94, 146 (2020). https://doi.org/10.1007/s12043-020-02004-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02004-w

Keywords

PACS Nos

Navigation