Log in

A transformed rational function method for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

A direct method, called the transformed rational function method, is used to construct more types of exact solutions of nonlinear partial differential equations by introducing new and more general rational functions. To illustrate the validity and advantages of the introduced general rational functions, the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama (YTSF) equation is considered and new travelling wave solutions are obtained in a uniform way. Some of the obtained solutions, namely exponential function solutions, hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions and rational solutions, contain an explicit linear function of the independent variables involved in the potential YTSF equation. It is shown that the transformed rational function method provides more powerful mathematical tool for solving nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Malfliet, Am. J. Phys. 60, 650 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. W X Ma and B Fuchssteiner, J. Non-Linear Mech. 31, 329 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y Chen, B Li and H Q Zhang, Z. Angew. Math. Phys. 55, 983 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. M L Wang, Phys. Lett. A213, 279 (1996)

    ADS  Google Scholar 

  5. C T Yan, Phys. Lett. A224, 77 (1996)

    ADS  Google Scholar 

  6. S K Liu et al, Phys. Lett. A289, 69 (2001)

    ADS  Google Scholar 

  7. Z Y Yan, Commun. Phys. Comput. 153, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  8. C Q Dai and J F Zhang, Chaos, Solitons and Fractals 27, 1042 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M L Wang and Y B Zhou, Phys. Lett. A318, 84 (2003)

    ADS  Google Scholar 

  10. M L Wang and X Z Li, Phys. Lett. A343, 48 (2005)

    ADS  Google Scholar 

  11. E Yomba, Phys. Lett. A340, 149 (2005)

    MathSciNet  ADS  Google Scholar 

  12. Sirendaoreji and J Sun, Phys. Lett. A309, 387 (2003)

    MathSciNet  ADS  Google Scholar 

  13. C P Liu and X P Liu, Phys. Lett. A348, 222 (2006)

    ADS  Google Scholar 

  14. S Zhang and T C **a, J. Phys. A: Math. Theor. 40, 227 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J H He and X H Wu, Chaos, Solitons and Fractals 30, 700 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S Zhang, Phys. Lett. A365, 448 (2007)

    ADS  Google Scholar 

  17. H Li and J L Zhang, Pramana – J. Phys. 72, 915 (2009)

    Article  ADS  Google Scholar 

  18. W X Ma and J H Lee, Chaos, Solitons and Fractals 42, 1356 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. T S Raju, C N Kumar and P K Panigrahi, J. Phys. A: Math. Gen. 38, L271 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. V M Vyas et al, J. Phys. A: Math. Gen. 39, 9151 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A M Wazwaz, Appl. Math. Comput. 196, 363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. S J Yu et al, J. Phys. A: Math. Gen. 31, 3337 (1998)

    Article  ADS  MATH  Google Scholar 

  23. J Schiff, Painlevé transendent, their asymptotics and physical applications (Plenum, New York, 1992)

    Google Scholar 

  24. A Boz and A Bekir, Comput. Math. Appl. 56, 1451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Z Y Yan, Phys. Lett. A318, 78 (2003)

    ADS  Google Scholar 

  26. C L Bai and H Zhao, Phys. Lett. A354, 428 (2006)

    MathSciNet  ADS  Google Scholar 

  27. H Zhao and C L Bai, Chaos, Solitons and Fractals 30, 217 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. T X Zhang et al, Chaos, Solitons and Fractals 34, 1006 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A M Wazwaz, Appl. Math. Comput. 23, 592 (2008)

    Article  MathSciNet  Google Scholar 

  30. Z D Dai, F Liu and D L Li, Appl. Math. Comput. 207, 360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. X P Zeng, Z D Dai and D L Li, Chaos, Solitons and Fractals 42, 657 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHENG ZHANG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZHANG, S., ZHANG, HQ. A transformed rational function method for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Pramana - J Phys 76, 561–571 (2011). https://doi.org/10.1007/s12043-011-0068-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0068-5

Keywords.

PACS Nos

Navigation