Log in

Comparative analysis of camelid mitochondrial genomes

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Camelus dromedarius has played a pivotal role in both culture and way of life in the Arabian peninsula, particularly in arid regions where other domestic animals cannot be easily domesticated. Although, the mitochondrial genomes have recently been sequenced for several camelid species, wider phylogenetic studies are yet to be performed. The features of conserved gene elements, rapid evolutionary rate, and rare recombination make the mitochondrial genome a useful molecular marker for phylogenetic studies of closely related species. Here we carried out a comparative analysis of previously sequenced mitochondrial genomes of camelids with an emphasis on C. dromedarius, revealing a number of noticeable findings. First, the arrangement of mitochondrial genes in C. dromedarius is similar to those of the other camelids. Second, multiple sequence alignment of intergenic regions shows up to 90% similarity across different kinds of camels, with dromedary camels to reach 99%. Third, we successfully identified the three domains (termination-associated sequence, conserved domain and conserved sequence block) of the control region structure. The phylogenetic tree analysis showed that C. dromedarius mitogenomes were significantly clustered in the same clade with Lama pacos mitogenome. These findings will enhance our understanding of the nucleotide composition and molecular evolution of the mitogenomes of the genus Camelus, and provide more data for comparative mitogenomics in the family Camelidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Swailem A. M., Shehata M. M., Abu-Duhier F. M., Al-Yamani E. J., Al-Busadah K. A., Al-Arawi M. S. et al. 2010 Sequencing, analysis, and annotation of expressed sequence tags for Camelus dromedarius. PLoS One 5, e10720.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avvaru A. K., Sowpati D. T. and Mishra R. K. 2017 PERF: an exhaustive algorithm for ultra-fast and efficient identification of microsatellites from large DNA sequences. Bioinformatics 34, 943–948.

    Article  Google Scholar 

  • Boore J. L. 1999 Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G. et al. 2013 MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319.

    Article  PubMed  Google Scholar 

  • Brown G. G., Gadaleta G., Pepe G., Saccone C. and Sbis A. E. 1986 Structural conservation and variation in the d-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192, 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Chen X. J. 2013 Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol. Mol. Biol. Rev. 77, 476–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui P., Ji R., Ding F., Qi D., Gao H., Meng H. et al. 2007 A complete mitochondrial genome sequence of the wild two-humped camel (camelus bactrianus ferus): an evolutionary history of camelidae. BMC Genomics 3, 241.

    Article  Google Scholar 

  • Gemmell N. J., Western P. S., Watson J. M. and Graves J. 1996 Evolution of the mammalian mitochondrial control region–comparisons of control region sequences between monotreme and therian mammals. Mol. Biol. Evol. 13, 798–808.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Freire M., De Cabo R., Bernier M., Sollott S. J., Fabbri E., Navas P. et al. 2015 Reconsidering the role of mitochondria in aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1334–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A., Bhardwaj A., Supriya, Sharma P., Pal Y. Mamta. et al. 2015 Mitochondrial DNA- a tool for phylogenetic and biodiversity search in equines. J. Biodivers. Endanger. Species S1, 006.

    Google Scholar 

  • Hu X.-D. and Gao L.-Z. 2016 The complete mitochondrial genome of domestic sheep, ovis aries. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 1425–1427.

    Article  PubMed  Google Scholar 

  • Katoh K. and Standley D. M. 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S. et al. 2012 Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S., Stecher G. and Tamura K. 2016 Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe T. M. and Chan P. P. 2016 tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S., Lindgren A. G., Srivastava A. S., Clark A. T. and Banerjee U. 2011 Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 29, 486–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manee M. M., Alharbi S. N., Algarni A. T., Alghamdi W. M., Altammami M. A., Alkhrayef M. N. et al. 2017 Molecular cloning, bioinformatics analysis, and expression of small heat shock protein beta-1 from Camelus dromedarius Arabian camel. PLoS One 12, e0189905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng R., Zeng B., Meng X., Yue B., Zhang Z. and Zou F. 2007 The complete mitochondrial genome and phylogenetic analysis of the giant panda (ailuropoda melanoleuca). Gene 397, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Robinson K., Creed J., Reguly B., Powell C., Wittock R., Klein D. et al. 2010 Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay. Prostate Cancer Prostatic Dis. 13, 126–131.

    Article  CAS  PubMed  Google Scholar 

  • Saccone C., Pesole G. and Sbisa E. 1991 The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33, 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Satoh T. P., Miya M., Endo H. and Nishida M. 2006 Round and pointed-head grenadier fishes (actinopterygii: Gadiformes) represent a single sister group: evidence from the complete mitochondrial genome sequences. Mol. Phylogenet. Evol. 40, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Shi X., Tian P., Lin R., Huang D. and Wang J. 2016 Characterization of the complete mitochondrial genome sequence of the globose head whiptail Cetonurus globiceps (Gadiformes: Macrouridae) and its phylogenetic analysis. PLoS One 11, e0153666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stöver B. C. and Müller K. F. 2010 Treegraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taanman J.-W. 1999 The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta Bioenerg. 1410, 103–123.

    Article  CAS  Google Scholar 

  • Tang Q., Liu H., Mayden R. and **ong B. 2006 Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the cobitoidea (teleostei: Cypriniformes). Mol. Phylogenet. Evol. 39, 347–357.

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin B. F. and Kirnos M. D. 1977 Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Biochim. Biophys. Acta Nucleic Acids Protein Synth. 475, 323–336.

    Article  CAS  Google Scholar 

  • Wada K., Nishibori M. and Yokohama M. 2007 The complete nucleotide sequence of mitochondrial genome in the Japanese sika deer (cervus nippon), and a phylogenetic analysis between cervidae and bovidae. Small Ruminant Res. 69, 46–54.

    Article  Google Scholar 

  • Wang Z., Ding G., Chen G., Sun Y., Sun Z., Zhang H. et al. 2012 Genome sequences of wild and domestic bactrian camels. Nat. Commun. 3, 1202–1202.

    Article  PubMed  Google Scholar 

  • Wu H., Guang X., Al-Fageeh M. B., Cao J., Pan S., Zhou H. et al. 2014 Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188.

    Article  CAS  PubMed  Google Scholar 

  • **ao X., Yang S., Lin D., Wang Y., Hua Y., Wang Y. et al. 2016 The complete mitochondrial genome and phylogenetic analysis of Chinese Jianchang horse (Equus caballus). Clon. Transgen. 5, 2.

    Google Scholar 

  • **ufeng X. and Árnason Ú. 1994 The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148, 357–362.

    Article  Google Scholar 

  • Zinovkina L. 2018 Mechanisms of mitochondrial DNA repair in mammals. Biochemistry 83, 233–249.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Maha A. Alshuaibi at the College of Computer and Information Sciences, Imam Muhammad Ibn Saud Islamic University, for her valuable input in executing this project; and Amer S. Alharthi at the National Centre for Robotics Technologies and Intelligent Systems, King Abdulaziz City for Science and Technology, for his technical support. This work was funded by the Life Science and Environment Research Institute and the Centre of Excellence for Genomics (Grant 20-0078), King Abdulaziz City for Science and Technology, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manee M. Manee.

Additional information

Corresponding editor: Subramaniam Ganesh

MMM and MBA conceived and designed the experiments; MMM, MAA, SAB, SHA, RMA and ATA carried out the experiments; MMM, MAA, SAB, ATA and BMA analysed the data; MMM, MAA and SAB wrote the manuscript. All authors reviewed the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 5312 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manee, M.M., Alshehri, M.A., Binghadir, S.A. et al. Comparative analysis of camelid mitochondrial genomes. J Genet 98, 88 (2019). https://doi.org/10.1007/s12041-019-1134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1134-x

Keywords

Navigation