Log in

Subduction–collision processes and crustal growth in eastern Dharwar Craton: Evidence from petrochemical studies of Hyderabad granites

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The granite batholiths of eastern Dharwar Craton, which are showing intrusive relationship with TTGs, exposed in the eastern part of Telangana state at University of Hyderabad, Gachibowli (9.30 km2), are studied for their petrographic and geochemical characteristics compared with their counterparts in EDC and evaluated their petrogenesis. These are predominantly microcline and quartz with subordinate plagioclase, exhibiting intergranular and perthitic textures. Geochemically, they are strongly peraluminous to slightly metaluminous in nature with high Alumina Saturation Index (ASI) ranging from 0.86 to 1.11 indicating the role of plagioclase in their genesis. Their alkali-calcic to alkalic nature, narrow range of Modified Alkali-Lime Index (MALI; Na2O+K2O −CaO), and low Fe-number reflect their similarities with the I-type Cordilleran granites. Prominent negative Europium anomalies, high Sr, Rb, Rb/Sr and low Sr/Y ratios indicate moderate to low pressure partial melting of pre-existing TTG with residual plagioclase in the source. We suggest, the melting of older TTGs through crustal anataxis process formed these granites and the sanukitoid melts supplied the required heat for the melting of TTG to evolve into granites. The genesis of these granites supports reworking of older crust, crustal differentiation during syn-collisional stage and marks the stabilization of continental crust in the Dharwar Craton during the Neoarchean time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure16

Similar content being viewed by others

References

  • Aitchison J 1986 The Statistical Analysis of Compositional Data; Chapman and Hall, London.

    Google Scholar 

  • Almeida J A C, Dall’Agnol R, Oliveira M A, Macambira M J B, Pimentel M M, Rämö O T, Guimarães F V and Leite A A S 2011 Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite–greenstone terrane: Implications for the growth of the Archean crust of the Carajás Province, Brazil; Precamb. Res. 187 201–221.

    Google Scholar 

  • Almeida J A C, Dall’Agnol R and Leite A A S 2013 Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite–greenstone terrane, Carajás Province, Brazil; J. South Am. Earth Sci. 42 103–126.

    Google Scholar 

  • Anjaneyulu M, Nagaraju K and Reddy I P 2019 Petrological and geochemical studies of precambrian granitoids from cherlapally area, Nalgonda district, Telangana state, India; J. Appl. Geochem. 21 311–316.

    Google Scholar 

  • Balakrishnan S, Hansen G N and Rajamani V 1990 Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar schist belt, southern India; Contrib. Mineral. Petrol. 107 279–292.

    Google Scholar 

  • Balakrishnan S, Rajamani V and Hanson G N 1999 U–Pb ages for zircon and titanite from the Ramagiri area, southern India: Evidence for accretionary origin of the eastern Dharwar craton during the late Archean; J. Geol. 107 69–86.

    Google Scholar 

  • Barnes S J and Van Kranendonk M J 2014 Archean andesites in the east Yilgarn craton, Australia: Products of plume-crust interaction? Lithosphere 6 80–92.

    Google Scholar 

  • Bidyananda M, Goswami J N and Srinivasan R 2011 Pb–Pb zircon ages of Archaean metasediments and gneisses from the Dharwar craton, southern India: Implications for the antiquity of the eastern Dharwar craton; J. Earth Syst. Sci. 120 643–661.

    Google Scholar 

  • Bonin B 2004 Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review; Lithos 78 1–24.

    Google Scholar 

  • Bonin B 2007 A-type granites and related rocks: evolution of a concept, problems and prospects; Lithos 97 1–29.

    Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence; Precamb. Res. 99 91–111.

    Google Scholar 

  • Champion D C and Sheraton J W 1997 Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes; Precamb. Res. 83 109–132.

    Google Scholar 

  • Chappel B W and White A J R 2001 Two contrasting granite types: 25 years later; Aust. J. Earth Sci. 48 489–499.

    Google Scholar 

  • Chardon D and Jayananda M 2008 Three-dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar Craton, India); Tectonics 27 1–15.

    Google Scholar 

  • Clemens J D, Belcher R W and Kisters A F M 2010 The Heerenveen batholith, Barberton Mountain Land, South Africa: Mesoarchaean, potassic, felsic magmas formed by melting of an ancient subduction complex; J. Petrol. 51 1099–1120.

    Google Scholar 

  • Condie K C 1981 Archean Greenstone Belts; Vol. 3, Elsevier, Amsterdam.

    Google Scholar 

  • Condie K C 1989 Geochemical changes in baslts and andesites across the Archean–Proterozoic boundary: Identification and significance; Lithos 23 1–18.

    Google Scholar 

  • Condie K C 2000 Episodic continental growth models: afterthoughts and extensions; Tectonophys. 322 153–162.

    Google Scholar 

  • Condie K C and Kroner A 2013 The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean; Gondwana Res. 23 394–402.

  • Crawford A R 1969 Reconnaissance Rb–Sr dating of the Precambrian rocks of southern peninsular India; J. Geol. Soc. India 10 117–166.

    Google Scholar 

  • Debon F and Lemmet M 1999 Evolution of Fe/Mg ratios in Late Variscan plutonic rocks from the External Crystalline Massif of the Alps (France, Italy, Switzerland); J. Petrol. 40 1151–1185.

    Google Scholar 

  • De Paolo D J 1981 Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization; Earth Planet. Sci. Lett. 53 189–202.

    Google Scholar 

  • Dey S, Gajapathi Rao R, Gorikhan R A, Veerabhaskar D and Sunil Kumar M K 2003 Geochemistry and origin of northern Closepet Granite from Gudur-Guledagudda area, Bagalkot district, Karnataka; J. Geol. Soc. India 62 152–168.

    Google Scholar 

  • Dey S, Rai A K and Chaki A 2009 Geochemistry of granitoids of Bilgi area, northern part of eastern Dharwar craton, southern India—example of transitional TTGs derived from depleted source; J. Geol. Soc. India 73 854–870.

    Google Scholar 

  • Dey S, Pandey U K, Rai A K and Chaki A 2012 Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: possible implications for late Archaean crustal accretion; J. Asian Earth Sci. 45 40–56.

    Google Scholar 

  • Dey S, Nandy J, Choudhary A K, Liu Y and Zong K 2014 Origin and evolution of granitoids associated with the Kadiri greenstone belt, eastern Dharwar craton: a history of orogenic to anorogenic magmatism; Precamb. Res. 246 64–90.

    Google Scholar 

  • Dey S, Halla J, Kurhila M, Nandy J, Heilimo E and Pal S 2017 Geochronology of Neoarchean granitoids of the NW eastern Dharwar craton: Implications for crust formation; Geol. Soc. London Spec. Publ. 449 89–121.

    Google Scholar 

  • Downes H, Shaw A, Williamson B J and Thirlwall M F 1997 Sr, Nd and Pb isotope geochemistry of the Hercynian granodiorites and monzogranites, Massif Central, France; Chem. Geol. 136 99–122.

    Google Scholar 

  • Eby G N 1992 Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications; Geology 20 641–644.

    Google Scholar 

  • Feng R and Kerrich R 1992 Geochemical evolution of granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superior Province, Canada: implications for tectonic history and source regions; Chem. Geol. 98 23–70.

    Google Scholar 

  • Ferré E C, Caby R, Peucat J J, Capdevila R and Monié P 1998 Pan-African, post-collisional, ferro-potassic granite and quartz–monzonite plutons of Eastern Nigeria; Lithos 45 255–279.

    Google Scholar 

  • Fliedner M M and Klemperer S L 2000 Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula; Earth Planet. Sci. Lett. 179 567–579.

    Google Scholar 

  • French J E and Heaman L M 2010 Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia; Precamb. Res. 183 416–441.

    Google Scholar 

  • Frost B R and Frost C D 2008 A geochemical classification for feldspathic igneous rocks; J. Petrol. 49 1955–1969.

    Google Scholar 

  • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D 2001 A geochemical classification for granitic rocks; J. Petrol. 42 2033–2048.

    Google Scholar 

  • Gastil G 1960 Continents and mobile belts in the light of mineral dating; Int. Geol. Congress 9 162–169.

    Google Scholar 

  • Goutham M R, Sandhya R, Rao B M, Patil S K and Murthy B V S 2010 Rock magnetic and palaeomagnetic study of the Archaean granites from Hyderabad, India; J. Indian Geophys. Union 14 67–74.

    Google Scholar 

  • Green T H 1995 Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system; Chem. Geol. 120 347–359.

    Google Scholar 

  • GSI 1995 District resource map of Nalgonda region of EDC; Geological Survey of India, Kolkata.

    Google Scholar 

  • Guitreau M, Mukasa S B, Loudin L and Krishnan S 2017 New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes; Precamb. Res. 302 33–49.

    Google Scholar 

  • Halla J, van Hunen J, Heilimo E and Hölttä P 2009 Geochemical and numerical constraints on Neoarchean plate tectonics; Precamb. Res. 174 155–162.

    Google Scholar 

  • Harris N B W, Pearce J A and Tindle A G 1986 Geochemical characteristics of collision zone magmatism; Geol. Soc. London Spec. Publ. 19 67–81.

    Google Scholar 

  • Heilimo E, Halla J and Huhma H 2011 Single-grain zircon U–Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province; Lithos 121 87–99.

    Google Scholar 

  • Huppert H E and Sparks R S J 1988 The generation of granitic magmas by intrusion of basalt into continental crust; J. Petrol. 29 599–624.

    Google Scholar 

  • Irvine T N J and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Canadian J. Earth Sci. 8 523–548.

    Google Scholar 

  • Jahn B M, Auvray B, Shen Q H, Liu D Y, Zhang Z Q, Dong Y J and Mace J 1988 Archean crustal evolution in China: the Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle; Precamb. Res. 38 381–403.

    Google Scholar 

  • Janardhan A S, Newton R C and Hansen E C 1982 The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India; Contrib. Mineral. Petrol. 79 130–149.

    Google Scholar 

  • Jayananda M, Martin H, Peucat J J and Mahabaleswar B 1995 Late Archaean crust-mantle interactions: Geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India; Contrib. Mineral. Petrol. 119 314–329.

    Google Scholar 

  • Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B and Mahabaleswar B 2000 Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry; Precamb. Res. 99 225–254.

    Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Capdevila R 2006 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150 1–26.

    Google Scholar 

  • Jayananda M, Kano T, Peucat J J and Channabasappa S 2008 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: Constraints from Nd isotopes and whole-rock geochemistry; Precamb. Res. 162 160–179.

    Google Scholar 

  • Jayananda M, Peucat J J, Chardon D, Rao B K, Fanning C M and Corfu F 2013 Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76.

    Google Scholar 

  • Jayananda M, Gireesh R V, Sekhamo K U and Miyazaki T 2014 Coeval felsic and mafic magmas in neoarchean calc-alkaline magmatic arcs, Dharwar Craton, southern India: field and petrographic evidence from mafic to Hybrid magmatic enclaves and synplutonic mafic dykes; J. Geol. Soc. India 84 5–28.

    Google Scholar 

  • Jayananda M, Santosh M and Aadhiseshan K R 2018 Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India; Earth Sci. Rev. 181 12–42.

    Google Scholar 

  • Jayananda M, Guitreau M, Thomas T T, Martin H, Aadhiseshan K R, Gireesh R V, Peucat J J and Satyanarayanan M 2019 Geochronology and geochemistry of Meso-to-Neoarchean magmatic epidote-bearing potassic granites, western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), southern India: Implications for the successive stages of crustal reworking and cratonization; Geol. Soc. London Spec. Publ. 489 489–2018.

    Google Scholar 

  • Joshi K B, Bhattacharjee J, Rai G, Halla J, Ahmad T, Kurhila M and Choudhary A K 2017 The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, Central India; Geol. Soc. London Spec. Publ. 449 123–157.

    Google Scholar 

  • Käpyaho A, Mänttäri I and Huhma H 2006 Growth of Archaean crust in the Kuhmo district, Eastern Finland: U–Pb and Sm–Nd isotope constraints on plutonic rocks; Precamb. Res. 146 95–119.

    Google Scholar 

  • Krishna A K, Murthy N N and Govil P K 2007 Multi-element analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry; Atomic Spectrosc. Norwalk Conn. 28 202.

    Google Scholar 

  • Krogstad E J, Hanson G N and Rajamani V 1991 U–Pb ages of zircon and sphene for two gneiss terranes adjacent to the Kolar Schist Belt, South India: evidence for separate crustal evolution histories; J. Geol. 99 801–815.

    Google Scholar 

  • Laurent O, Martin H, Moyen J F and Doucelance R 2014 The diversity and evolution of late-Archean granitoids: Evidence for the onset of modern-style plate tectonics between 3.0 and 2.5 Ga; Lithos 205 208–235.

  • Li Z and Wei C 2017 Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: petrogenesis and tectonic implications; Precamb. Res. 292 175–192.

    Google Scholar 

  • Li S S, Santosh M, Ganguly S, Thanooja P V, Sajeev K, Pahari A and Manikyamba C 2018 Neoarchean microblock amalgamation in southern India: Evidence from the Nallamalai Suture Zone; Precamb. Res. 314 1–27.

    Google Scholar 

  • Liégeois J P, Navez J, Hertogen J and Black R 1998 Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization; Lithos 45 1–28.

  • Madhusudhan Rao B, Shashidhar D, Narsaiah R and Murthy B V S 2002 Geological significance of magnetic signatures over the granitic region in Osmania University campus, Hyderabad, India; J. Indian Acad. Geosci. 45 39–44.

    Google Scholar 

  • Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; Geol. Soc. Am. Bull. 101 635–643.

    Google Scholar 

  • Manikyamba C and Kerrich R 2012 Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes; Geosci. Frontiers 3 225–240.

    Google Scholar 

  • Manikyamba C, Kerrich R, Naqvi S M and Mohan M R 2004a Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri–Hungund composite greenstone belt, Dharwar craton; Precamb. Res. 134 21–39.

    Google Scholar 

  • Manikyamba C, Naqvi S M, Mohan M R and Rao T G 2004b Gold mineralisation and alteration of Penakacherla schist belt, India, constraints on Archaean subduction and fluid processes; Ore Geol. Rev. 24 199–227.

    Google Scholar 

  • Manikyamba C, Naqvi S M, Rao D S, Mohan M R, Khanna T C, Rao T G and Reddy G L N 2005 Boninites from the Neoarchaean Gadwal greenstone belt, Eastern Dharwar craton, India: Implications for Archaean subduction processes; Earth Planet. Sci. Lett. 230 65–83.

    Google Scholar 

  • Manikyamba C, Kerrich R, Khanna T C, Krishna A K and Satyanarayanan M 2008 Geochemical systematics of komatiite–tholeiite and adakitic-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India; Lithos 106 155–172.

    Google Scholar 

  • Manikyamba C, Kerrich R, Khanna T C, Satyanarayanan M and Krishna A K 2009 Enriched and depleted arc basalts, with Mg-andesites and adakites: a potential paired arc–back-arc of the 2.6 Ga Hutti greenstone terrane, India; Geochim. Cosmochim. Acta 73 1711–1736.

    Google Scholar 

  • Manikyamba C, Kerrich R, Polat A, Raju K, Satyanarayanan M and Krishna A K 2012 Arc picrite–potassic adakitic–shoshonitic volcanic association of the Neoarchean Sigegudda Greenstone Terrane, Western Dharwar Craton: transition from arc wedge to lithosphere melting; Precamb. Res. 212 207–224.

    Google Scholar 

  • Manikyamba C, Kerrich R, Polat A and Saha A 2013 Geochemistry of two stratigraphically-related ultramafic (komatiite) layers from the Neoarchean Sigegudda greenstone terrane, Western Dharwar Craton, India: evidence for compositional diversity in Archean mantle plumes; Lithos 177 120–135.

    Google Scholar 

  • Manikyamba C, Santosh M, Kumar B C, Rambabu S, Tang L, Saha A, Khelen A C, Ganguly S, Singh T D and Rao D S 2016 Zircon U–Pb geochronology, Lu–Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: Implications for Neoarchean–Paleoproterozoic crustal growth; Gondwana Res. 38 313–333.

  • Manikyamba C, Ganguly S, Santosh M and Subramanyam K S V 2017 Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: window to Archean plate tectonics, continent growth, and mineral endowment; Gondwana Res. 50 38–66.

  • Martin H 1993 The mechanisms of petrogenesis of the Archaean continental crust-comparison with modern processes; Lithos 30 373–388.

    Google Scholar 

  • Martin H 1999 Adakitic magmas: modern analogues of Archaean granitoids; Lithos 46 411–429.

    Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F and Champion D 2005 An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution; Lithos 79 1–24.

    Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Google Scholar 

  • Meldrum A, Abdel-Rahman A F, Martin R F and Wodicka N 1997 The nature, age and petrogenesis of the Cartier Batholith, northern flank of the Sudbury Structure, Ontario, Canada; Precamb. Res. 82 265–285.

    Google Scholar 

  • Mikkola P, Lauri L S and Kapyaho A 2012 Neoarchean leucogranitoids of the Kianta Complex, Karelian Province, Finland: source characteristics and processes responsible for the observed heterogeneity; Precamb. Res. 206–207 72–86.

    Google Scholar 

  • Moreno J A, Molina J F, Montero P, Anbar M A, Scarrow J H, Cambeses and Bea F 2014 Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt; Lithos 192 56–85.

    Google Scholar 

  • Moreno J A, Molina J F, Bea F, Anbar M A and Montero P 2016 Th–REE and Nb–Ta accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex S. Sinai, Egypt: An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites; Lithos 258 173–196.

  • Moyen J F 2011 The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth; Lithos 123 21–36.

    Google Scholar 

  • Moyen J-F, Martin H and Jayananda M 2001 Multi-element geochemical modelling of crust–mantle interactions during late-Archaean crustal growth: the Closepet granite (south India); Precamb. Res. 112 87–105.

    Google Scholar 

  • Moyen J F, Martin H, Jayananda M and Auvray B 2003 Late Archaean granites: a typology based on the Dharwar Craton (India); Precamb. Res. 127 103–123.

    Google Scholar 

  • Mukherjee S, Ghosh G, Das K, Bose S and Hayasaka Y 2018 Geochronological and geochemical signatures of the granitic rocks emplaced at the north-eastern fringe of the Eastern Dharwar Craton, south India: Implications for late Archean crustal growth; Geol. J. 53 781–1801.

    Google Scholar 

  • Murthy N G K 1995 Proterozoic mafic dykes in southern peninsular India; Geol. Soc. India Memoir 33 81–98.

    Google Scholar 

  • Mushkin A, Navon O, Halicz L, Hartmann G and Stein M 2003 The petrogenesis of A-type magmas from the Amram Massif, southern Israel; J. Petrol. 44 815–832.

    Google Scholar 

  • Nandy J, Dey S and Heilimo E 2019 Neoarchaean magmatism through arc and lithosphere melting: evidence from Eastern Dharwar Craton; Geol. J. https://doi.org/10.1002/gj.3498.

  • Naqvi S M and Rogers J J W 1987 Precambrian Geology of India; Oxford University Press, New York.

    Google Scholar 

  • Narshimha C H, Reddy U V B, Sesha Sai V V and Subramanyam K S V 2018 Petrological and geochemical characterisation of the Punugodu Granite Pluton, Nellore Schist Belt; Implications for proterozoic anorogenic granite magmatism in the Eastern Dharwar Craton, southern India; J. Indian Geophys. Union 22 187–97.

    Google Scholar 

  • O’connor J T 1965 A classification for quartz-rich igneous rocks based on feldspar ratios; US Geol. Surv. Prof. Paper B 525 79–84.

    Google Scholar 

  • Ohta T and Arai H 2007 Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering; Chem. Geol. 240 280–297.

    Google Scholar 

  • Páez G N, Ruiz R, Guido D M, Jovic S M and Schalamuk I B 2010 The effects of K-metasomatism in the Bahía Laura Volcanic Complex, Deseado Massif, Argentina: petrologic and metallogenic consequences; Chem. Geol. 273 300–313.

    Google Scholar 

  • Pahari A, Tang L, Manikyamba C, Santosh M, Subramanyam K S V and Ganguly S 2019 Meso-Neoarchean magmatism and episodic crustal growth in the Kudremukh–Agumbe granite-greenstone belt, Western Dharwar Craton, India; Precamb. Res. 323 16–54.

    Google Scholar 

  • Pandey O P, Agrawal P K and Chetty T R K 2002 Unusual lithospheric structure beneath the Hyderabad granitic region, eastern Dharwar craton, south India; Phys. Earth Planet. Int. 130 59–69.

    Google Scholar 

  • Pearce J A, Harris N B and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Google Scholar 

  • Pearce J A and Peate D W 1995 Tectonic implications of the composition of volcanic arc magmas; Ann. Rev. Earth Planet. Sci. 23 251–285.

    Google Scholar 

  • Peccerillo A and Taylor S R 1976 Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey; Contrib. Mineral. Petrol. 58 63–81.

    Google Scholar 

  • Peucat J J, Mahabaleswar B and Jayananda M 1993 Age of younger tonalitic magmatism and granulitic metamorphism in the south Indian transition zone (Krishnagiri area): Comparison with older peninsular gneisses from the Gorur–Hassan area; J. Metamophr. Geol. 11 879–888.

    Google Scholar 

  • Peucat J J, Bouhallier H, Fanning C M and Jayananda M 1995 Age of the Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, south India); J. Geol. 103 701–710.

    Google Scholar 

  • Peucat J J, Jayananda M, Chardon D, Capdevila R, Fanning C M and Paquette J L 2013 The lower crust of the Dharwar Craton, southern India: Patchwork of Archean granulitic domains; Precamb. Res. 227 4–28.

    Google Scholar 

  • Poitrasson F, Pin C, Duthou J L and Platevoet B 1994 Aluminous subsolvus anorogenic granite genesis in the light of Nd isotopic heterogeneity; Chem. Geol. 112 199–219.

    Google Scholar 

  • Polat A and Hofmann A W 2003 Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland; Precamb. Res. 126 197–218.

    Google Scholar 

  • Praveen K, Anjaneyulu M, Narshimha C and Reddy U V B 2018 Petrology and geochemistry data of the precambrian granitoids from the Hyderabad area, part of Eastern Dharwar Craton, Telangana state, India; Data in Brief 21 1909–1917.

    Google Scholar 

  • Radhakrishna B P 1983 Archaean granite-greenstone terrain of the south Indian Shield in Precambrian of south India; Geol. Soc. India Memoir 4 1–46.

    Google Scholar 

  • Radhakrishna T, Balasubramonian G, Joseph M and Krishnendu N R 2004 Mantle processes and geodynamics: Inferences from mafic dykes of south India; Earth System Science and Natural Resources Management, CESS Silver Jubilee Compendium, pp. 3–25.

  • Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; 2nd edn, vol. 1. Geological Society of India, Bangalore.

    Google Scholar 

  • Ram Mohan M, Piercey S J, Kamber B S and Sarma D S 2013 Subduction related tectonic evolution of the Neoarchean eastern Dharwar Craton, southern India: New geochemical and isotopic constraints; Precamb. Res. 227 204–226.

    Google Scholar 

  • Rao, N V C, Wu Yuan F, Mitchell R H, Li Li Q and Lehmann B 2013 Mesoproterozoic U–Pb ages, trace elements and Sr–Nd isotopic composition of perovskite from kimberlites of the eastern Dharwar Craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectono-magmatic event; Chem. Geol. 353 48–64.

    Google Scholar 

  • Ray J, Saha A, Ganguly S, Balaram V, Krishna A K and Hazra S 2011 Geochemistry and petrogenesis of Neoproterozoic Mylliem granitoids, Meghalaya Plateau, northeastern India; J. Earth Syst. Sci. 120 459–473.

    Google Scholar 

  • Reymer A and Schubert G 1986 Rapid growth of some major segments of continental crust; Geology 14 299–302.

    Google Scholar 

  • Rollinson H R 1993 A terrane interpretation of the Archaean Limpopo Belt; Geol. Mag. 130 755–765.

    Google Scholar 

  • Samal A K and Srivastava R K 2014 Petrographic and XRD studies on a new occurrence of molybdenite within late Archaean mafic enclaves near Hyderabad, eastern Dharwar craton, India; Curr. Sci. 106 364–367.

    Google Scholar 

  • Santosh M, Shaji E, Tsunogae T, Mohan M R, Satyanarayanan M and Horie K 2013 Suprasubduction zone ophiolite from Agali hill: petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India; Precamb. Res. 231 301–324.

    Google Scholar 

  • Sarma D S, Fletcher I R, Rasmussen B, McNaughton N J, Mohan M R and Groves D I 2011 Archaean gold mineralization synchronous with late cratonization of the Western Dharwar Craton, India: 2.52 Ga U–Pb ages of hydrothermal monazite and xenotime in gold deposits; Mineral. Deposita 46 273–288.

    Google Scholar 

  • Sarvothaman H 2001 Archean high-Mg granitoids of mantle origin in the Eastern Dharwar Craton of Andhra Pradesh; J. Geol. Soc. India 58 261–268.

    Google Scholar 

  • Saxena P R and Sudarshan V 1997 Occurrence of molybdenite in the granites of Pirancheru near Hyderabad, Andhra Pradesh; J. Geol. Soc. India 50 347–348.

    Google Scholar 

  • Shand S J 1943 The Eruptive Rocks; 2nd edn (New York: John Wiley).

  • Shirey S B and Hanson G N 1986 Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts: Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada; Geochim. Cosmochim. Acta 50 2631–2651.

    Google Scholar 

  • Shukla S and Ram Mohan M 2019 Magma mixing in Neoarchean granite from Nalgonda region, Eastern Dharwar Craton, India: Morphological, mineralogical and geochemical evidences; J. Earth Syst. Sci. 128 71.

    Google Scholar 

  • Singh A P, Kumar V V and Mishra D C 2004 Subsurface geometry of Hyderabad granite pluton from gravity and magnetic anomalies and its role in the seismicity around Hyderabad; Curr. Sci. 86 580–586.

    Google Scholar 

  • Singh T D, Manikyamba C, Lakshminarayana G and Subramanyam K S V 2017 Geochemical signatures of adoni porphyritic granitoids, Eastern Dharwar Craton, India: Implication for partial melting of lower continental crust; J. Appl. Geochem. 19 183.

    Google Scholar 

  • Singh P K, Verma S K, Singh V K, Moreno J A, Oliveira E P and Mehta P 2019 Geochemistry and petrogenesis of sanukitoids and high-K anatectic granites from the Bundelkhand Craton, India: Implications for late-Archean crustal evolution; J. Asian Earth Sci. 174 263–282.

    Google Scholar 

  • Sitaramayya S 1971 The pyroxene-bearing granodiorites and granites of Hyderabad area (The Osmania granite); Quat. J. Geol. Min. Metal. Soc. India 43 117–129.

    Google Scholar 

  • Smithies R H and Witt W K 1997 Distinct basement terranes identified from granite geochemistry in late Archaean granite-greenstones, Yilgarn Craton, Western Australia; Precamb. Res. 83 185–201.

    Google Scholar 

  • Smithies R H and Champion D C 2000 The Archaean high-Mg diorite suite: Links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth; J. Petrol. 41 1653–1671.

    Google Scholar 

  • Smithies R H, Champion D C and Van Kranendonk M J 2009 Formation of Paleoarchean continental crust through intracrustal melting of enriched basalt; Earth Planet. Sci. Lett. 281 298–306.

    Google Scholar 

  • Spitz G and Darling R 1978 Major and minor element lithogeochemical anomalies surrounding the Louvem copper deposit, Val d’Or, Quebec; Can. J. Earth Sci. 15 1161–1169.

    Google Scholar 

  • Subba Rao M V, Rama Rao P and Divakara Rao V 1998 The advent of the Proterozoic—a trigger for extensive intracrustal processes in the south Indian Shield? Gondwana Res. 1 275–283.

    Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London Spec. Publ. 42 313–345.

    Google Scholar 

  • Swami Nath J and Ramakrishnan M (eds) 1981 Early Precambrian supracrustals of southern Karnataka; Geol. Surv. India Memoir 112, 352.

  • Sylvester P J 1994 Archean granite plutons; In: Archean Crustal Evolution (ed.) Condie K C, Amsterdam, pp. 261–314.

  • Szilas K and Garde A 2013 Mesoarchaean aluminous rocks at Storø, southern West Greenland: new age data and evidence of premetamorphic seafloor weathering of basalts; Chem. Geol. 354 124–138.

    Google Scholar 

  • Taylor S R and McLennan S M 1985 The geochemical evolution of the continental crust; Rev. Geophys. 33 241–265.

    Google Scholar 

  • Thompson A B and Connolly J A 1995 Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings; J. Geophys. Res. Solid Earth 100 15,565–15,579.

  • Turner S, Sandiford M and Foden J 1992 Some geodynamic and compositional constraints on ‘post orogenic’ magmatism; Geology 20 931–934.

    Google Scholar 

  • Van Kranendonk M J, Hugh Smithies R, Hickman A H and Champion D C 2007 Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia; Terra Nova 19 1–38.

    Google Scholar 

  • Verma S P and Díaz-González L 2012 Application of the discordant outlier detection and separation system in the geosciences; Int. Geol. Rev. 54 593–614.

    Google Scholar 

  • Verma S P, Pandarinath K, Verma S K and Agrawal S 2013 Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks; Lithos 168 113–123.

    Google Scholar 

  • Ward C D, McArthur J M and Walsh J N 1992 Rare earth element behaviour during evolution and alteration of the Dartmoor Granite, SW England; J. Petrol. 33 785–815.

    Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95 407–419.

    Google Scholar 

  • Whalen J B, Percival J A, McNicoll V J and Longstaffe F J 2004 Geochemical and isotopic (Nd–O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the western Superior Province: Implications for late-Archaean tectonomagmatic processes; Precamb. Res. 132 303–326.

    Google Scholar 

  • Winchester J A and Floyd P A1977 Geochemical differentiation of different magma series and their differentiation products using immobile elements; Chem. Geol. 20 325–343.

  • Zhai M 2014 Multi-stage crustal growth and cratonization of the North China Craton; Geosci. Frontiers 5 457–469.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr V M Tiwari, Director, CSIR-NGRI for permitting to publish this work. CM acknowledges the funds from Council of Scientific and Industrial Research (CSIR) to National Geophysical Research Institute through MLP 6406-28(CM). The authors are grateful to the two anonymous reviewers for their constructive suggestions, comments, and Prof. Rajneesh Bhutani for efficient editorial handling. Drs M Satyanarayanan, S S Sawant, and A K Krishna are acknowledged for providing the geochemical data. These studies belong to the MSc dissertation work of Mr. Prasanth. Dr Devleena and Mr. Prasanth thank the Head, Centre for Earth, Ocean & Atmospheric Sciences (CEOAS), University of Hyderabad for his support and encouragement. Mr. Arijit Pahari acknowledges the DST INSPIRE Fellowship for pursuing the PhD programme at NGRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Manikyamba.

Additional information

Communicated by Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahari, A., Prasanth, P., Tiwari, D.M. et al. Subduction–collision processes and crustal growth in eastern Dharwar Craton: Evidence from petrochemical studies of Hyderabad granites. J Earth Syst Sci 129, 32 (2020). https://doi.org/10.1007/s12040-019-1296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1296-1

Keywords

Navigation