Log in

Electrochemical aspects of restricted rhenium(I)-based supramolecular complexes with semi-rigid benzimidazolyl and rigid hydroxyquinone ligands

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Supramolecular coordination complex [(Re(CO)3)2(dhnq)(L2)] (3) containing two fac-Re(CO)3 cores, rigid dianionic dhnq (H2-dhnq = 6,11-dihydroxy-5,12-naphthacenedione) motif and semi-rigid ditopic nitrogen donor 1,2-bis(2-nonylbenzimidazol-1-ylmethyl)benzene (o-Nbenzbix = L2) was synthesized. Compounds o-Nbenzbix and 3 were characterized using various analytical and spectroscopic methods. The electrochemical properties of 3 were studied using cyclic voltammetric measurements. SCCs [(Re(CO)3)2(dhnq)(L1)] (1) and [(Re(CO)3)2(dhaq)(L1)] (2) possessing p-xylene spacer 1,4-bis(2-nonylbenzimidazol-1-ylmethyl)benzene (L1) and 1,4-dihydroxy-9,10-anthraquinone (H2-dhaq) were also synthesized as reported previously. SCCs 1–3 were investigated via electrochemical methods. A plot of the Randles-Sevcik equation yielded a straight line for complex 3 thus, establishing that the redox processes were diffusion-controlled.

Graphic abstract

Ditopic N donor containing o-xylene spacer (L2) and its cyclic complex 1 are designed and synthesized. The electrochemical properties of 1 and complexes 2-3 having p-xylene spacer based N donor (L1) are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stang P J and Olenyuk B 1997 Molecular architectures: coordination as the motif in the rational design of supramolecular metallacyclic Acc. Chem. Res. 30 502

    Article  CAS  Google Scholar 

  2. Ruben M, Rojo J, Salguero F J R, Uppadine L H and Lehn J M 2004 Grid-type metal ion architectures: functional metallosupramolecular arrays Angew. Chem. Int. Ed. 43 3644

    Article  CAS  Google Scholar 

  3. Slone R V, Benkstein K D, Belanger S, Hupp J T, Guzei I A and Rheingold A L 1998 Luminescent transition-metal-containing cyclophanes (“molecular squares”): covalent self-assembly, host-guest studies and preliminary nanoporous material applications Coord. Chem. Rev. 171 221

    CAS  Google Scholar 

  4. Sun S S and Lees A J 2002 Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors Coord. Chem. Rev. 230 171

    CAS  Google Scholar 

  5. Thanasekaran V, Liao R T, Liu Y H, Rajendran T, Rajagopal S and Lu K L 2005 Metal containing molecular rectangles: synthesis and photophysical properties Coord. Chem. Rev. 249 1085

    CAS  Google Scholar 

  6. Sun S S and Lees A J 2000 Self-assembly triangular and square Rhenium(I) tricarbonyl complexes: A comprehensive study of their preparation, electrochemistry, photophysics, photochemistry and host-guest properties J. Am. Chem. Soc. 122 8956

    Article  CAS  Google Scholar 

  7. Sathiyendiran M, Chang C H, Chuang C H, Luo T T, Wen Y S and Lu K L 2007 Rigidity-modulated conformation control: a strategy for incorporating flexible building motif into metallcycles Dalton Trans. 19 1872

  8. Sathiyendiran M, Wu J Y, Velayudham M, Lee G H, Peng S M and Lu K L 2009 Neutral metallacyclic rotors Chem. Commun. 25 3795

  9. Rajendran T, Manimaran B, Lee F Y, Chen P J, Lin S C, Lee G H, Peng S M, Chen Y J and Lu K L 2001 Self-assembly of tetrametallic square [Re4(CO)12Br4(µ-pz)4] (pz= pyrazine)from [Re(CO)4Br(pz)]. A mechanistic approach J. Chem. Soc. Dalton Trans. 22 3346

  10. Manimaran B, Thanasekaran P, Rajendran T, Liao R T, Liu Y H, Lee G H, Peng S M, Rajagopal S and Lu K L 2003 Self-assembly of octarhenium-based neutral luminescent rectangular prisms Inorg. Chem. 42 4795

    Article  CAS  Google Scholar 

  11. Cook T R and Stang P J 2015 Recent developments in the preparation and chemistry of metallacycles and metallacages via coordinaton Chem. Rev. 115 7001

    CAS  Google Scholar 

  12. Audebert P and Miomandre F 2013 Electrofluorochromism: from molecular systems to set-up and display Chem. Sci. 4 575

    Article  CAS  Google Scholar 

  13. Kaim W 2011 Concepts for metal complex chromophores absorbing in the near infrared Coord. Chem. Rev. 255 2503

    CAS  Google Scholar 

  14. Hupp J T 2006 Rhenium-linked multiporphyrin assemblies: synthesis and properties. In: Non-Covalent Multi-Porphyrin Assemblies. Structure and Bonding E Alessio (Ed.) Vol. 121 (Springer: Berlin, Heidelberg) p. 145

  15. Sathiyendiran M, Tsai C C, Thanasekaran P, Luo T T, Yang C I, Lee G H, Peng S M and Lu K L 2011 Organometallic calixarenes: Sycee like tetrarhenium(I) cavitands and tunable size, colour, functionality and coin-slot complexation Chem. Eur. J. 17 9857

    Article  CAS  Google Scholar 

  16. Gupta D, Rajakannu P, Shankar B, Hussain F and Sathiyendiran M 2014 Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex J. Chem. Sci. 126 1501

    Article  CAS  Google Scholar 

  17. Louie M W, Liu H W, Lam M H C, Lau T C and Lo K K W 2009 Novel luminescent tricarbonylrhenium(I) polypyridine tyramine-derived dipicolylamine complexes as sensors for zinc (II) and cadmium (II) ions Organometallics 28 4297

  18. Partyka D V, Deligonul N, Washington M P and Gray T G 2009 fac-Tricarbonyl rhenium(I) azadipyrromethene complexes Organometallics 28 5837

  19. Si Z J, Li X N, Li X Y and Zhang H J 2009 Synthesis, photophysical properties and theoretical studies on pyrrole-containing bromo Re(I) complex J. Organomet. Chem. 694 3742

    Article  CAS  Google Scholar 

  20. Vogler A and Kunkely H J 2000 Excited state properties of organometallic compounds of rhenium in high and low oxidation states Coord. Chem. Rev. 200 991

    Google Scholar 

  21. Lees A J 1998 Organometallic complexes as luminescence process in monitoring thermal and photochemical polymerization Coord. Chem. Rev. 177 3

    CAS  Google Scholar 

  22. Wang K Z, Huang L, Gao L H, ** L P and Huang C H 2002 Synthesis, crystal structure and photoelectric properties of Re(CO)3ClL (L= 2-(1-Ethylbenzimidazol-2-yl)pyridine) Inorg. Chem. 41 3353

    CAS  Google Scholar 

  23. Lundin N J, Blackman A G, Gordon K C and Officer D L 2006 Synthesis and characterization of a multicomponent rhenium(I) complex for application as an OLED Dopant Angew. Chem., Int. Ed. 45 2582

  24. Ju C C, Zhang A G, Sun H L, Wang K Z, Jiang W L, Bian Z Q and Huang C H 2011 Synthesis, crystal structure and optical and photoelectrochemical properties of a N∩O rhenium(I) complex Organometallics 30 712

  25. Tsubaki H, Sekine A, Ohashi Y, Koike K, Takeda H and Ishitani O 2005 Control of photochemical, photophysical electrochemical and photocatalytic properties of rhenium(I) complexes using intramolecular weak interactions between ligands J. Am. Chem. Soc. 127 15544

    Article  CAS  Google Scholar 

  26. **ong J, Liu W, Wang Y, Cui L, Li Y Z and Zuo J L 2012 Tricarbonyl mono- and dinuclear Rhenium(I) complexes with redox-active bis(pyrazole)-tetrathiafulvalene ligands: Synthesis, crystal structure and properties Organometallics 31 3938

  27. Shankar B, Sahu S, Deibel N, Schweinfurth D, Sarkar B, Elumalai P, Gupta D, Hussain F, Krishnamoorthy G and Sathiyendiran M 2014 Luminescent dirhenium(I)-double-heterostranded helicate and mesocate Inorg. Chem. 53 922

    CAS  Google Scholar 

  28. Wright P J, Muzzioli S, Skelton B W, Raiteri P, Lee J, Koutsantonis G, Silvester D S, Stagni S and Massi M 2013 One-step assembly of Re(I) tricarbonyl 2-pyridyltetrazolato metallacalix [3] arene with aqua emission and reversible three-electron oxidation Dalton Trans. 42 8188

  29. Hartmann H, Berger S, Winter R, Fielder J and Kaim W 2000 Reversible and site-specific reduction of the ligand sides in a molecular rectangle with up to eight electrons Inorg. Chem. 39 4977

    CAS  Google Scholar 

  30. Wu J Y, Chang C H, Thanasekaran P, Tsai C C, Tseng T W, G H Lee, Peng S M and Lu K L 2008 Unusual face-to-face π-π stacking interactions within an indigo-pillared M3(tpt)-based triangular metalloprism Dalton Trans. 6110

  31. Bhattacharya D, Chang C H, Cheng Y H, Lai L L, Lu H Y, Lin C Y and Lu K L 2012 Multielectron redox chemistry of a neutral, NIR-active, indigo-pilared ReI-base triangular metalloprism Chem. Eur. J. 18 5275

    Article  CAS  Google Scholar 

  32. Nagarajaprakash R, Govindarajan R and Manimaran B 2015 One-pot synthesis of oxamidato-bridged hexarhenium trigonal prisms adorned with ester functionality Dalton Trans. 44 11732

    CAS  PubMed  Google Scholar 

  33. Rajakannu P, Shankar B, Yadav A, Shanmugam R, Gupta D, Hussain F, Chang C H, Sathiyendiran M and Lu K L 2011 Adaptation toward restricted conformational dynamics: From the series of neutral molecular rotors Organometallics 30 3168

    Article  CAS  Google Scholar 

  34. Dinolfo P H, Coropceanu V, Bredas J L and Hupp T 2006 A new class of mixed-valence with orbitally degenerate organic redox centers. Examples based on hexa-rhenium molecular prisms J. Am. Chem. Soc. 128 12592

  35. Maji S, Sarkar B, Mobin S M, Fiedler J, Urbanos F A, Aparicio A, Kaim W and Lahiri G K 2008 Intramolecular valency and spin interaction in meso- and rac- diastereomers of a p-quinonoids bridged diruthenium complex Inorg. Chem. 47 5204

    CAS  Google Scholar 

  36. Haga M, Dodsworth E S and Lever A B P 1986 Catechol-quinone redox series involving bis(pyridine) ruthenium (II) and tetrakis(pyridine) ruthenium (II) Inorg. Chem. 25 447

    CAS  Google Scholar 

  37. Peover M E and Davies 1963 The influence of ion-association on the polarography of quinines in dimethylformamide J. Electroanal. Chem. 6 46

  38. Aljabali A A, Barclay J E, Butt J N, Lomonossoff G P and Evans D J 2010 Redox-active ferocene-modified cowpea mosaic virus nanoparticles Dalton Trans. 39 7569

    CAS  PubMed  Google Scholar 

  39. Andrieux C P, Blocman C, Bouchiat J M D, Halla F M and Saveant J M 1980 Homogeneous redox catalysis of electrochemical reactions: Part V cyclic voltammetry J. Electroanal. Chem. 113 19

    Article  CAS  Google Scholar 

  40. Bhattacharya D, Sathiyendiran M, Lu T T, Chang C H, Cheng Y H, Lin C Y, Lee G H, Peng S M and Lu K L 2009 Ground and excited electronic states of quinone-containing Re(I)-based rectangles: a comprehensive study of their preparation, electrochemistry and photophysics Inorg. Chem. 48 3731

    CAS  Google Scholar 

  41. Bhattacharya D, Sathiyendiran M, Wu J Y, Chang C H, Huang S C, Zeng Y L, Lin C Y, Thanasekaran P, Lin B C, Hsu C P, Lee G H, Peng S M and Lu K L 2010 Quinonoid-bridged chair-shaped dirhenium(I) metallacycles: Synthesis, characterization and spectroelectrochemical studies Inorg. Chem. 49 10264

    CAS  Google Scholar 

  42. Gupta D, Shankar B, Elumalai P, Shanmugam R, Mobin S M, Weisser F, Sarkar B and Sathiyendiran M 2014 Synthesis and characterization of a tetrametallic coordination complex of tetrahydroxy-p-benzoquinone J. Organomet. Chem. 754 59

    Article  CAS  Google Scholar 

  43. Gosztola D, Niemczyk M P and Svec W 2000 Excited double states of electrochemically generated aromatic imide and diimide radical anions J. Phys. Chem. 104 6545

    Article  CAS  Google Scholar 

  44. Goyal R N and Kumar N 1999 Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk Aust. J. Chem. 52 43

    CAS  Google Scholar 

  45. Deibel N, Sommer M G, Hohloch S, Schwann J, Schweinfurth D, Ehertand F and Sarkar B 2014 Dinuclear quinonoid-bridged d8 metal complexes with redox-active azobenzene stoppers: electrochemical properties and electrochromic behavior Organometallics 33 4756

  46. Damas A L, Gullo M P, Rager M N, Jutand A, Barbieri A and Amouri H 2013 Near-infrared room temperature emission from a novel class of Ru(II) heteroleptic complexes with quinonoid organometallic linker Chem. Commun. 49 3796

    CAS  Google Scholar 

  47. Rajendran T, Manimaran B, Liao R T, Y H Liu, Thanasekaran P, Lin R J, Chang I J, Chou P T, Ramraj R, Rajagopal S and Lu K L 2010 Luminescence quenching of Re(I) molecular rectangles by quinones Dalton Trans. 39 2928

Download references

Acknowledgements

Financial support from the Council of Scientific and Industrial Research (CSIR) (01(2793)/14/EMR-II), India is gratefully acknowledged. Dr. B. Shankar is acknowledged for his help. SKG is thankful to the University of Delhi, India for providing R & D grant. MN is grateful to Council of Scientific & Industrial Research (CSIR) and SY is grateful to University Grant Commission (UGC) for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malaichamy Sathiyendiran or Sandeep Kaur-Ghumaan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Natarajan, M., Sathiyendiran, M. et al. Electrochemical aspects of restricted rhenium(I)-based supramolecular complexes with semi-rigid benzimidazolyl and rigid hydroxyquinone ligands. J Chem Sci 132, 1 (2020). https://doi.org/10.1007/s12039-019-1689-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1689-3

Keywords

Navigation