Log in

Synthesis and structure of Anderson cluster based organic–inorganic hybrid solid, \([\{\hbox {Cu}(2\hbox {-}pzc)(\hbox {H}_{2}\hbox {O})_{2}\}_{2}\{\hbox {H}_{7}\hbox {AlMo}_{6}\hbox {O}_{24}\}]\cdot 17\hbox {H}_{2}\hbox {O}\) and its dye adsorption properties

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An inorganic–organic hybrid compound, namely \([\{\hbox {Cu}(2\hbox {-}pzc)(\hbox {H}_{2}\hbox {O})_{2}\}_{2}\{\hbox {H}_{7}\hbox {AlMo}_{6}\hbox {O}_{24}\}]{\cdot }17\hbox {H}_{2}\hbox {O}\) was synthesized based on Anderson–Evans cluster by the normal stirring process at room temperature. Its structure consists of metal coordination polymer covalently linked with Anderson–Evans cluster forming a 2D-sheet with void space containing water chains as determined by Single-Crystal X-ray Diffraction technique. This material owing to its void space of approx. 13 Å was utilized for adsorption of organic dyes like Methylene Blue (MB), Basic Violet 1 (BV1) and shows ultra-high uptake (more than 90%) within 5 min.

Graphical abstract:

Anderson-Evans cluster based organic-inorganic hybrid solid is reported which shows remarkable activity in adsorbtion of basic dyes namely Methylene Blue and Basic Violet 1 from their aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. He W W, Li S L, Zang H Y, Yang G S, Zhang S R, Su Z M and Lan Y Q 2014 Entangled structures in polyoxometalate-based coordination polymers Coord. Chem. Rev. 279 141

    Article  CAS  Google Scholar 

  2. Bassil B S, Ibrahim M, Al-Oweini R, Asano M, Wang Z, van Tol J, Dalal N S, Choi K Y, Ngo Biboum R, Keita B and Nadjo L 2011 A Planar \(\{\text{ Mn }_{19}\,(\text{ OH })_{12}\}^{26+}\) unit incorporated in a 60-tungsto-6-silicate polyanion Angew. Angew Chem. Int. Ed. 50 5961

    Article  CAS  Google Scholar 

  3. Guo J, Zhang D, Chen L, Song Y, Zhu D and Xu Y 2013 Syntheses, structures and magnetic properties of two unprecedented hybrid compounds constructed from open Wells–Dawson anions and high-nuclear transition metal clusters Dalton Trans. 42 8454

    Article  CAS  Google Scholar 

  4. Sha J, Wang C, Peng J, Chen J, Tian A and Zhang P 2007 [Cu (4, \(4^\prime \)-bipy)]2[H4P2W18O62]\(\cdot 2{\rm H}_{2}{\rm O}\): the first three-dimensional framework based on saturated Wells–Dawson POMs modified by multi-track Cu–N coordination polymeric chains Inorg. Chem. Commun. 10 1321

    Article  CAS  Google Scholar 

  5. Zhao J W, Zhang J L, Li Y Z, Cao J and Chen L J 2014 Novel one-dimensional organic–inorganic polyoxometalate hybrids constructed from heteropolymolybdate units and copper–aminoacid complexes Cryst. Growth Des. 14 1467

    Article  CAS  Google Scholar 

  6. Suzuki K, Tang F, Kikukawa Y, Yamaguchi K and Mizuno N 2014 Visible-light-induced photoredox catalysis with a tetracerium-containing silicotungstate Angew. Chem. Int. Ed. 53 5356

    Article  CAS  Google Scholar 

  7. Li F and Xu L 2011 Coordination assemblies of polyoxomolybdate cluster framework: from labile building blocks to stable functional materials Dalton Trans. 40 4024

    Article  CAS  Google Scholar 

  8. Cui X B, Xu J Q, Sun Y H, Li Y, Ye L and Yang G Y 2004 hydrothermal synthesis and crystal structure of a novel 1-D chain structure constructed from polyoxometalates and coordination complex fragments Inorg. Chem. Commun. 7 58

    Article  CAS  Google Scholar 

  9. Li X X, Wang Y X, Wang R H, Cui C Y, Tian C B and Yang G Y 2016 Designed assembly of heterometallic cluster organic frameworks based on anderson-type polyoxometalate clusters Angew. Chem. 128 6572

    Article  Google Scholar 

  10. Lan Y Q, Li S L, Wang X L, Shao K Z, Du D Y, Zang H Y and Su Z M 2008 Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from CuII, CuI, II to CuI via changing organic amine Inorg. Chem. 47 8179

    Article  CAS  Google Scholar 

  11. Meng J X, Lu Y, Li Y G, Fu H and Wang E B 2009 Base-directed self-assembly of octamolybdate-based frameworks decorated by flexible N-containing ligands Cryst. Growth Des. 9 4116

    Article  CAS  Google Scholar 

  12. Song F, Ding Y, Ma B, Wang C, Wang Q, Du X, Fu S and Song J 2013 K 7 [Co III Co II (\(\text{ H }_{2}\text{ O }\)) W 11 O 39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation Energy Environ. Sci. 6 1170

    Article  CAS  Google Scholar 

  13. Wang X L, Qin C, Wang E B, Su Z M, Li Y G and Xu L 2006 Self-assembly of nanometer-scale [Cu\(_{24}\)I\(_{10}\)L\(_{12}\)]\(^{14+}\) cages and ball-shaped Keggin clusters into a (4, 12)-connected 3D framework with photoluminescent and electrochemical properties Angew. Chem. Int. Ed. 45 7411

    Article  CAS  Google Scholar 

  14. Lu Y, Xu Y, Li Y, Wang E, Xu X and Ma Y 2006 New polyoxometalate compounds built up of lacunary Wells–Dawson anions and trivalent lanthanide cations Inorg. Chem. 45 2055

    Article  CAS  Google Scholar 

  15. Bustos C, Hasenknopf B, Thouvenot R, Vaissermann J, Proust A and Gouzerh P 2003 Lindqvist-type (Aryldiazenido) polyoxomolybdates-synthesis, and structural and spectroscopic characterization of compounds of the type (nBu\(_{4}\)N)\(_{3}\)[Mo\(_{6}\)O\(_{18}\) (N\(_{2}\)Ar)] Eur. J. Inorg. Chem. 2003 2757

    Article  Google Scholar 

  16. Zhang J, Li Q, Zeng M, Huang Y, Zhang J, Hao J and Wei Y 2016 The proton-controlled synthesis of unprecedented diol functionalized Anderson-type POMs Chem. Commun. 52 2378

    Article  CAS  Google Scholar 

  17. Pavani K, Lofland S E, Ramanujachary K V and Ramanan A 2007 The hydrothermal synthesis of transition metal complex templated octamolybdates Eur. J. Inorg. Chem. 2007 568

    Article  Google Scholar 

  18. Singh M and Ramanan A 2011 Crystal engineering of polyoxomolybdates based metal–organic solids: the case of chromium molybdate cluster based metal complexes and coordination polymers Cryst. Growth Des. 11 3381

    Article  CAS  Google Scholar 

  19. Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q and Zhou H C 2015 Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water J. Am. Chem. Soc. 137 7169

    Article  CAS  Google Scholar 

  20. Blazevic A and Rompel A 2016 The Anderson–Evans polyoxometalate: from inorganic building blocks via hybrid organic–inorganic structures to tomorrows “Bio-POM” Coord. Chem. Rev. 307 42

    Article  CAS  Google Scholar 

  21. Long D L, Tsunashima R and Cronin L 2010 Polyoxometalates: building blocks for functional nanoscale systems Angew. Chem. Int. Ed. 49 1736

    Article  CAS  Google Scholar 

  22. Wang C C, Li J R, Lv X L, Zhang Y Q and Guo G 2014 Photocatalytic organic pollutants degradation in metal–organic frameworks Energy Environ. Sci. 7 2831

    Article  CAS  Google Scholar 

  23. Robinson T, McMullan G, Marchant R and Nigam P 2001 Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative Bioresour. Technol. 77 247

    Article  CAS  Google Scholar 

  24. Soghomonian V, Chen Q, Haushalter R C and Zubieta J 1995 Investigations into the targeted design of solids: hydrothermal synthesis and structures of one-, two-, and three-dimensional phases of the oxovanadium–organodiphosphonate system Angew. Chem. Int. Ed. 34 223

    Article  CAS  Google Scholar 

  25. Allis D G, Rarig R S, Burkholder E and Zubieta J 2004 A three-dimensional bimetallic oxide constructed from octamolybdate clusters and copper–ligand cation polymer subunits. A comment on the stability of the octamolybdate isomers J. Mol. Struct. 688 11

    Article  CAS  Google Scholar 

  26. Taleghani S, Mirzaei M, Eshtiagh-Hosseini H and Frontera A 2016 Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalates: a crystal engineering perspective Coord. Chem. Rev. 309 84

    Article  CAS  Google Scholar 

  27. Rauf M A and Ashraf S S 2012 Survey of recent trends in biochemically assisted degradation of dyes Chem. Eng. J. 15 520

    Article  Google Scholar 

  28. Deng S, Xu H, Jiang X and Yin J 2013 Poly(vinyl alcohol)(PVA)-enhanced hybrid hydrogels of hyperbranched poly (ether amine)(hPEA) for selective adsorption and separation of dyes Macromolecules 46 2399

    Article  CAS  Google Scholar 

  29. Zhang Y, Li D, Chen Y, Wang X and Wang S 2009 Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition Appl. Catal. B Environ. 86 182

    Article  CAS  Google Scholar 

  30. Bruker Analytical X-ray Systems, SMART: Bruker Molecular Analysis Research Tool, Version 5.618; Bruker AXS: Madison, WI, 2000

  31. Bruker Analytical X-ray Systems, SAINT-NT, Version 6.04; Bruker AXS: Madison, WI, 2001

  32. Bruker Analytical X-ray Systems, SHELXTL-NT, Version 6.10; Bruker AXS: Madison, WI, 2000

  33. Klaus B 1999 DIAMOND, version 1.2c; University of Bonn: Germany

  34. Zhang Y Q, Wang C C, Zhu T, Wang P and Gao S J 2015 Ultra-high uptake and selective adsorption of organic dyes with a novel polyoxomolybdate-based organic–inorganic hybrid compound RSC Adv. 5 45688

    Article  CAS  Google Scholar 

  35. Hao X L, Ma Y Y, Wang Y H, Zang H Y and Li Y G 2014 Isopolymolybdate-induced organic–inorganic hybrid assemblies with copper ions and bichelate-bridging ligands CrystEngComm 16 10017

    Article  CAS  Google Scholar 

  36. Najafi M, Abbasi A, Masteri-Farahani M and Janczak J 2015 Two novel octamolybdate nanoclusters as catalysts for dye degradation by air under room conditions Dalton Trans. 44 6089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MS acknowledges Prof. Ramanan for Single Crystal X-Ray facility at IIT Delhi. AJ thanks INST for PhD fellowship. MS appreciates the financial support from the Department of Science and Technology (DST) SB/FT/CS-091/2014 Project, and instrumental facility and infrastructural support from INST. SV thanks INST (25(1)/2015-INST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Vaidya, S. & Singh, M. Synthesis and structure of Anderson cluster based organic–inorganic hybrid solid, \([\{\hbox {Cu}(2\hbox {-}pzc)(\hbox {H}_{2}\hbox {O})_{2}\}_{2}\{\hbox {H}_{7}\hbox {AlMo}_{6}\hbox {O}_{24}\}]\cdot 17\hbox {H}_{2}\hbox {O}\) and its dye adsorption properties. J Chem Sci 131, 7 (2019). https://doi.org/10.1007/s12039-018-1583-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1583-4

Keywords

Navigation