Log in

Carboxylic acid terminated, solution exfoliated graphite by organic acylation and its application in drug delivery

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Graphite nanosheets are considered as a promising material for a range of applications from flexible electronics to functional nanodevices such as biosensors, intelligent coatings and drug delivery. Chemical functionalization of graphite nanosheets with organic/inorganic materials offers an alternative approach to control the electronic properties of graphene, which is a zero band gap semiconductor in pristine form. In this paper, we report the aromatic electrophilic substitution of solution exfoliated graphite nanosheets (SEGn). The highly conjugated π-electronic system of graphite nanosheets enable it to have an amphiphilic characteristic in aromatic substitution reactions. The substitution was achieved through Friedel–Crafts (FC) acylation reaction under mild conditions using succinic anhydride as acylating agent and anhydrous aluminum chloride as Lewis acid. Such reaction renders towards the carboxylic acid terminated graphite nanosheets (SEGn–FC) that usually requires harsh reaction conditions. The product thus obtained was characterized using various spectroscopic and microscopic techniques. Highly stable water-dispersed sodium salt of carboxylic acid terminated graphite nanosheets (SEGn–FC-Na) was also prepared. A comparative sheet-resistance measurements of SEGn, SEGn–FC and SEGn–FC-Na were also done. Finally, the anticancer drug doxorubicin (DOX) was loaded on water dispersible SEGn–FC-Na with a loading capacity of 0.266 mg mg−1 of SEGn–FC-Na and the release of DOX from this water-soluble DOX-loaded SEGn–FC-Na at two different temperatures was found to be strongly pH dependent.

Selective carboxylic acid terminated solution exfoliated graphite nanosheets were achieved through Friedel–Crafts acylation reaction and dispersed in water by making Na-salt of the same. Anticancer drug doxorubicin was successfully loaded onto this highly water dispersible Na-salt and the drug release was found to be pH dependant. The low cost and efficient drug release make it a potential carrier for targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228

    Article  CAS  Google Scholar 

  2. Geim A K 2009 Science 324 1530

    Article  CAS  Google Scholar 

  3. Li B and Cao H 2011 J. Mater. Chem. 21 3346

    Article  CAS  Google Scholar 

  4. Sarkar S, Bekyarova E, Niyogi S and Haddon R C 2011 J. Am. Chem. Soc. 133 3324

    Article  CAS  Google Scholar 

  5. Liu L and Yan M 2011 J. Mater. Chem. 21 3273

    Article  CAS  Google Scholar 

  6. Hong B J, Compton O C, An Z, Eryazici I and Nguyen S T 2012 ACS Nano 6 63

    Article  CAS  Google Scholar 

  7. Zhang Q, Li W, Kong T, Su R and Li N 2013 Carbon 51 164

    Article  Google Scholar 

  8. Singh S K, Singh M K, Kulkarni P P, Sonkar V K, Gracio J J A and Dash D 2012 ACS Nano 6 2731

    Article  CAS  Google Scholar 

  9. Mukherjee A, Kang J H, Kuznetsov O, Sun Y, Thaner R, Bratt A S, Lomeda J R, Kelly K F and Billups W E 2011 Chem. Mater. 23 9

    Article  CAS  Google Scholar 

  10. Panchakarla L S and Govindaraj A 2008 J. Chem. Sci. 120 607

    Article  CAS  Google Scholar 

  11. Kakade B, Patil S, Sathe B, Gokhale S and Pillai V 2008 J. Chem. Sci. 120 599

    Article  CAS  Google Scholar 

  12. Bhowmik K, Pramanik S, Medda S K and De G 2012 J. Mater. Chem. 22 24690

    Article  CAS  Google Scholar 

  13. Eda G, Mattevi C, Yamaguchi H, Kim H and Chhowalla M 2009 J. Phys. Chem. C 113 15768

    Article  CAS  Google Scholar 

  14. Wojtoniszak M, Chen X, Kalenczuk R J and Wajda A 2012 Colloids Surf., B 89 79

    Article  CAS  Google Scholar 

  15. Yang K, Wan J, Zhang S, Zhang Y, Tong–Lee S and Liu Z 2010 ACS Nano 5 516

    Article  CAS  Google Scholar 

  16. Boukhvalov D W and Katsnelson M J 2008 J. Am. Chem. Soc. 130 10697

    Article  CAS  Google Scholar 

  17. Bonanni A, Chua C K and Pumera M 2014 Chem. Eur. J. 20 217

    Article  CAS  Google Scholar 

  18. Strom T A, Dillon E P, Hamilton C E and Barron A R 2010 Chem. Commun. 46 4097

    Article  CAS  Google Scholar 

  19. Meier M S, Wang G W, Haddon R C, Brock C P, Lloyd M A and Selegue J P 1998 J. Am. Chem. Soc. 120 2337

    Article  CAS  Google Scholar 

  20. Georgakilas V, Bourlinos A B, Zboril R, Steriotis T A, Dallas P, Stuboscd A K and Trapalis C 2010 Chem. Commun. 46 1766

    Article  CAS  Google Scholar 

  21. Stankovich S, Dikin D A, Dommett H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282

    Article  CAS  Google Scholar 

  22. Bai S and Shen X 2012 RSC Adv. 2 64

    Article  CAS  Google Scholar 

  23. Wu Q, Xu Y, Yao Z, Liu A and Shi G 2010 ACS Nano 4 1963

    Article  CAS  Google Scholar 

  24. Yoo E, Kim J, Hosono E, Zhou H, Kudo T and Honma I 2008 Nano Lett. 8 2277

    Article  CAS  Google Scholar 

  25. Qu L, Liu Y, Baek J B and Dai L 2010 ACS Nano. 4 1321

    Article  CAS  Google Scholar 

  26. Lucechinger N A, Athanassious E K and Stark W J 2008 Nanotechnology 19 445201

    Article  Google Scholar 

  27. Wang S, Ang P K, Wang Z, Tang A L L, Thong J T L and Loh K P 2010 Nano Lett. 10 92

    Article  CAS  Google Scholar 

  28. Lee V, Whittaker L, Jaye C, Baroudi K M, Fischer D A and Banerjee S 2009 Chem. Mater. 21 3905

    Article  CAS  Google Scholar 

  29. Mohanty H N and Berry V 2008 Nano Lett. 8 4469

    Article  CAS  Google Scholar 

  30. Bonaccorso F, Sun Z, Hassan T and Ferrari C 2010 Nature Photon. 4 611

    Article  CAS  Google Scholar 

  31. Jeon Y, Choi H J, Bae S Y, Chang D W and Baek J B 2011 J. Mater. Chem. 21 7820

    Article  CAS  Google Scholar 

  32. Lee H J, Han S W, Kwon Y D, Tan L S and Baek J B 2008 Carbon 46 1850

    Article  CAS  Google Scholar 

  33. Lim D H, Lyons C B, Tan L S and Baek J B 2008 J. Phys. Chem. C 112 12188

    Article  CAS  Google Scholar 

  34. Choi E K, Jeon I Y, Bae S Y, Lee H J, Shin H S, Dai L and Baek J B 2010 Chem. Commun. 46 6320

    Article  CAS  Google Scholar 

  35. Chua C K and Pumera M 2012 Chem. Asian J. 7 1009

    Article  CAS  Google Scholar 

  36. Shan C, Wang L, Han D, Li F, Zhang Q, Zhang X and Niu L 2013 Thin Solid Films 534 572

    Article  CAS  Google Scholar 

  37. Liu H, Kuila T, Kim N H, Kud B C and Lee J H 2013 J. Mater. Chem. A 13 739

    Google Scholar 

  38. Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A and Niu L 2009 Langmuir 25 12030

    Article  CAS  Google Scholar 

  39. Gao J, Liu F, Liu Y, Ma N, Wang Z and Zhang X 2010 Chem. Mater. 22 2213

    Article  CAS  Google Scholar 

  40. Chen H C, Chen Y H, Chen S L, Chern Y T, Tsai R Y and Hua M Y 2013 Biosens. Bioelectron. 46 84

    Article  CAS  Google Scholar 

  41. Chakravarty A, Bhowmik K, De G and Mukherjee A 2015 New J. Chem. 39 2451

    Article  CAS  Google Scholar 

  42. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscane S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401

    Article  CAS  Google Scholar 

  43. Aribert N, Camy S, Lucchese Y P, Condoret J S and Cognet P 2010 Int. J. Chem. Reactor Eng. 8 A53

    Article  Google Scholar 

  44. Boroujeni K P 2010 Turk. J. Chem. 34 621

    CAS  Google Scholar 

  45. Wade L G 2013 In Organic Chemistry, Indian Edition, 6th edn. (New Delhi: Pearson Education) p. 748

    Google Scholar 

  46. Mukherjee A, Combs R, Chattopadhyay J, Abmayr D W, Engel P S and Billups W E 2008 Chem. Mater. 20 7339

    Article  CAS  Google Scholar 

  47. Zhong X, ** J, Li S, Niu Z, Hu W, Li R and Ma J 2010 Chem. Commun. 46 7340

    Article  CAS  Google Scholar 

  48. Li M, Boggs M, Beebe T P and Huang C P 2008 Carbon 46 466

    Article  CAS  Google Scholar 

  49. Luong J H T, Hrapovic S, Liu Y L, Yang D Q, Sacher E and Wang D S 2005 J. Phys. Chem. B 109 1400

    Article  CAS  Google Scholar 

  50. **ng Y C, Li L, Chusuei C C and Hull R V 2005 Langmuir 21 4185

    Article  CAS  Google Scholar 

  51. Kovtyukhova N I, Mallouk T E, Pan L and Dickey E C 2003 J. Am. Chem. Soc. 125 9761

    Article  CAS  Google Scholar 

  52. Jiang Z, Yu X, Jiang Z, Menga Y and Shi Y 2009 J. Mater. Chem. 19 6720

    Article  CAS  Google Scholar 

  53. Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J and Brown N M D 2005 Carbon 43 153

    Article  CAS  Google Scholar 

  54. Nevskaia D M and Martín-Aranda R M 2003 Catal. Lett. 87 143

    Article  CAS  Google Scholar 

  55. Si Y and Samulski E T 2008 Nano Lett. 8 1679

    Article  CAS  Google Scholar 

  56. Zeta Potential of Colloids in Water and Waste Water 1985 ASTM Standard D 4187-82, American Society for Testing and Materials

  57. Kemp W 1991 In Organic Spectroscopy 3rd edn. (New York: Palgrave)

  58. Wu S, Zhao X, Li Y, Du Q, Sun J, Wang Y, Wang X, **a Y, Wang Z and **a L 2013 Materials 6 2026

    Article  CAS  Google Scholar 

  59. Sun W T, Zhang N, Li A G, Zou W W and Xu W F 2008 Int. J. Pharm. 353 243

    Article  CAS  Google Scholar 

  60. Lim E K, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Kim E, Haam S, Suh J S, Chung S J and Huh Y M 2013 Nanoscale Res. Lett. 8 467

    Article  Google Scholar 

Download references

Acknowledgements

KB and AC thank the CSIR, India for providing fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GOUTAM DE or ARNAB MUKHERJEE.

Additional information

Supplementary Information (SI)

Raman spectrum of microcrystalline graphite; Raman spectra of the G-FC obtained from reactions performed at various temperatures, time and solvent; XPS analysis of SEGn; FTIR and Raman spectra of SEGn–FC-Na; UV-Vis spectra of DOX solution before and after loading; and calibration curve of DOX solution are provided in Supplementary Information which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1.49 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BHOWMIK, K., CHAKRAVARTY, A., MANJU, U. et al. Carboxylic acid terminated, solution exfoliated graphite by organic acylation and its application in drug delivery. J Chem Sci 128, 1345–1354 (2016). https://doi.org/10.1007/s12039-016-1140-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1140-y

Keywords

Navigation