Log in

Real-time monitoring of translocation of selected type-III effectors from Xanthomonas oryzae pv. oryzae into rice cells

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Type-III (T3) effectors PthXo1 and AvrXa10 of Xanthomonas oryzae pv. oryzae are translocated into rice cells to induce virulence and avirulence on susceptible- and resistant-rice varieties Nipponbare and IRBB10, respectively. The translocation needs the bacterial T3 translocator Hpa1 and rice Oryza sativa plasma membrane protein OsPIP1;3. Here, we employed the β-lactamase (BlaM) reporter system to observe PthXo1 and AvrXa10 translocation. The system was established to monitor effectors of animal-pathogenic bacteria by quantifying the BlaM hydrolysis product [P] and fluorescence resonance energy transfer (FRET) of the substrate. The feasibility of the BlaM reporter in rice protoplasts was evaluated by three criteria. The first criterion indicated differences between both [P] and FRET levels among wild types and OsPIP1;3-overexpressing and OsPIP1;3-silenced lines of both Nipponbare and IRBB10. The second criterion indicated differences between [P] and FRET levels in the presence and absence of Hpa1. The last criterion elucidated the coincidence of PthXo1 translocation with induced expression of the PthXo1 target gene in protoplasts of Nipponbare and the coincidence of AvrXa10 translocation with induced expression of the AvrXa10 target gene in protoplasts of IRBB10. These results provide an experimental avenue for real-time monitoring of bacterial T3 effector translocation into plant cells with a pathological consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BlaM:

β-lactamase

PIP:

plasma membrane intrinsic protein

PM:

plasma membrane

TAL:

translocation activator-like

T3:

type III

Xoo :

Xanthomonas oryzae pv. oryzae

References

  • Alfano JR and Collmer A 2004 Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42 385–414

    Article  CAS  Google Scholar 

  • Bocsanczy AM, Nissinen RM, Oh CS and Beer SV 2008 Hrpn of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol. Plant Pathol. 9 425–434

    Article  CAS  Google Scholar 

  • Bogdanove AJ and Voytas DF 2011 TAL effectors: Customizable proteins for DNA targeting. Science 333 1843–1846

    Article  CAS  Google Scholar 

  • Büttner D 2012 Protein export according to schedule: Architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76 262–310

    Article  Google Scholar 

  • Chakravarthy S, Huot B and Kvitko BH 2017 Effector translocation: Cya reporter assay. Methods Mol. Biol. 1615 473–487

    Article  Google Scholar 

  • Charkowski AO, Alfano JR, Preston G, Yuan J, He SY and Collmer A 1998 The Pseudomonas syringae pv. tomato hrpw protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180 5211–5217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Chaudhury S, McShan AC, Kaur K and De GR 2013 Structure and biophysics of type III secretion in bacteria. Biochemistry 52 2508–2517

    Article  CAS  Google Scholar 

  • Chen H, Chen J, Li M, Chang M, Xu K, Shang Z, Zhao Y, Palmer I, Zhang Y, McGill J, Alfano JR, Nishimura MT, Liu F and Fu ZQ 2017 A bacterial type III effector targets the master regulator of salicylic acid signalling, NPR1, to subvert plant immunity. Cell Host Microbe 22 777–788

    Article  CAS  Google Scholar 

  • Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Hayes M, Beer SV and Dong H 2008 Identification of specific fragments of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhanced growth in rice. Phytopathology 98 781–791

    Article  CAS  Google Scholar 

  • Choi MS, Kim W, Lee C and Oh CS 2013 Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol. Plant-Microbe Interact. 26 1115–1122

    Article  CAS  Google Scholar 

  • Dik DA, Marous DR, Fisher JF and Mobashery S 2017 Lytic transglycosylases: Concinnity in concision of the bacterial cell wall. Crit. Rev. Biochem. Mol. Biol. 52 503–542

    Article  Google Scholar 

  • Domingues L, Ismail A, Charro N, Rodríguez-Escudero I, Holden DW, Molina M, Cid VJ and Mota LJ 2016 The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cell. Microbiol. 18 949–969

    Article  CAS  Google Scholar 

  • Dong N, Niu M, Hu L, Yao Q, Zhou R and Shao F 2016 Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella lepb effector. Nat. Microbiol. 12 16236

    Google Scholar 

  • Finsel I and Hilbi H 2015 Formation of a pathogen vacuole according to Legionella pneumophila: How to kill one bird with many stones. Cell. Microbiol. 17 935–950

    Article  CAS  Google Scholar 

  • Gu Y, Zavaliev R and Dong X 2017 Membrane trafficking in plant immunity. Mol. Plant 10 1026–1034

    Article  CAS  Google Scholar 

  • Haapalainen M, Engelhardt S, Küfner I, Li CM, Nürnberger T, Lee J, Romantschuk M and Taira S 2011 Functional map** of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Mol. Plant Microbe Interact. 12 151–166

    CAS  Google Scholar 

  • Hartmann N and Büttner D 2013 The inner membrane protein HrcV from Xanthomonas spp. is involved in substrate docking during type III secretion. Mol. Plant Microbe Interact. 26 1176–1189

    Article  CAS  Google Scholar 

  • Ji H and Dong H 2015a Biological significance and topological basis of aquaporin-partnering protein-protein interactions. Plant Signaling Behav. 10 e1011947

    Article  Google Scholar 

  • Ji H and Dong H 2015b Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Mol. Plant Pathol. 16 762–773

    Article  CAS  Google Scholar 

  • Jones DM and Padilla-Parra S 2016 The β-lactamase assay: Harnessing a FRET biosensor to analyse viral fusion mechanisms. Sensors (Basel). https://doi.org/10.3390/s16070950

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Masuta C and Ezawa T 2016 Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: Application of virus-induced gene silencing. New Phytol. 211 1202–1208

    Article  CAS  Google Scholar 

  • Kim JF and Beer SV 1998 Hrpw of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180 5203–5210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh HS and Collmer A 2007 Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J. Bacteriol. 189 8059–8072

    Article  CAS  Google Scholar 

  • Li YR, Che YZ, Zou HS, Cui YP, Guo W, Zou LF, Biddle EM, Yang CH and Chen GY 2011 Hpa2 required by HrpF to translocate Xanthomonas oryzae transcriptional activator-like effectors into rice for pathogenicity. Appl. Environ. Microbiol. 11 3809–3818

    Article  Google Scholar 

  • Li P, Zhang LY, Mo XY, Ji HT, Bian HJ, Hu YQ, Majid T, Long JY, Pang H, Tao Y, Ma JB and Dong HS 2019 Aquaporin PIP1;3 of rice and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J. Exp. Bot. pii erz130

  • Makino S, Sugio A, White F and Bogdanove AJ 2006 Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Mol. Plant Microbe Interact. 19 240–249

    Article  CAS  Google Scholar 

  • Mills E, Baruch K, Charpentier X, Kobi S and Rosenshinea I 2008 Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe 3 104–113

    Article  CAS  Google Scholar 

  • Mills E, Baruch K, Aviv G, Nitzan M and Rosenshinea I 2013 Dynamics of the type III secretion system activity of enteropathogenic Escherichia coli. MBio. 4 e00303–e00313

    Article  Google Scholar 

  • Mueller CA, Broz P and Cornelis GR 2008 The type III secretion system tip complex and translocon. Mol. Microbiol. 68 1085–1095

    Article  CAS  Google Scholar 

  • Scheibner F, Marillonnet S and Büttner D 2017 The TAL effector AvrBs3 from Xanthomonas campestris pv. vesicatoria contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. Front. Microbiol. 8 2180

    Article  Google Scholar 

  • Schreiber KJ, Baudin M, Hassan JA and Lewis JD 2016 Die another day: Molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Semin. Cell Dev. Biol. 56 124–133

    Article  CAS  Google Scholar 

  • Shi LW 2012 SPSS19.0 statistical analysis from accidence to conversance (Bei**g: Tsinghua University Press) pp 109–143

    Google Scholar 

  • Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White FF and Yin Z 2014 The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26 497–515

    Article  CAS  Google Scholar 

  • Wang X, Ji H, Mo X, Zhang L, Li P, Wang J and Dong H 2018 Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol. 18 105

    Article  Google Scholar 

  • White FF, Potnis N, Jones JB and Koebnik R 2009 The type III effectors of Xanthomonas. Mol. Plant Pathol. 10 749–766

    Article  CAS  Google Scholar 

  • Yang B, Sugio A and White FF 2006 Os8n3 is a host disease-susceptibility gene for bacterial blight of rice. Proc. Natl. Acad. Sci. USA 103 10503–10508

    Article  CAS  Google Scholar 

  • Yoo S, Cho YH and Sheen J 2007 Arabidopsis mesophyll protoplasts, a versatile cell system for transient gene expression analysis. Nat. Protoc. 2 1565–1572

    Article  CAS  Google Scholar 

  • Zhang J, Yin Z and White F 2015 TAL effectors and the executor R genes. Front. Plant Sci. 6 641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu Y, Li P, Wang X and Dong H 2018 Silencing of an aquaporin gene diminishes bacterial blight disease and enhances host resistance in rice. Australas. Plant Pathol. https://doi.org/10.1007/s13313-018-0609-1

    Article  Google Scholar 

  • Zhu WG, MaGbanua MM and White FF 2000 Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182 1844–1853

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Bing Yang (Department of Genetics, Development, and Cell Biology, Iowa State University) for the gift of the pthXo1 vector and our colleague Professor Ling Jiang (Agronomy College, Nan**g Agricultural University) for assistance in rice transformation. We thank financial support from the China National Key Research and Development Plan (Grant Number 2017YFD0200901), Natural Science Foundation of China (Grant Number 31772247) and Talent Recruitment Funding of Shandong Agricultural University (Grant Number 20171226).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Ji or Hansong Dong.

Additional information

Communicated by Ashis Kumar Nandi.

Corresponding editor: Ashis Kumar Nandi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, H., Zhang, L., Chen, L. et al. Real-time monitoring of translocation of selected type-III effectors from Xanthomonas oryzae pv. oryzae into rice cells. J Biosci 44, 82 (2019). https://doi.org/10.1007/s12038-019-9916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9916-0

Keywords

Navigation