Log in

Intracerebral Expression of AAV-APOE4 Is Not Sufficient to Alter Tau Burden in Two Distinct Models of Tauopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Apolipoprotein E4 (APOE4) is the major genetic risk factor for sporadic Alzheimer's disease (AD), which is characterized by amyloid β (Aβ) plaques and tau tangles. Though the role of APOE4 in Aβ pathogenesis has been mechanistically defined in rodent models, much less is known regarding the relationship of APOE4 to tau pathogenesis. Recent studies have indicated a possible correlation between APOE isoform-dependent alterations in tau pathology and neurodegeneration. To explore whether neuronal expression of APOE4 triggers tauopathy, here we delivered adeno-associated viruses (AAV) expressing human APOE4 in two different models of tauopathy—rTg4510 and PS19 lines. Intracerebroventricular delivery of AAV-APOE4 in neonatal rTg4510 and PS19 mice resulted in increased APOE4 protein in neurons but did not result in altered phosphorylated tau burden, pretangle tau pathology, or silver-positive tangle pathology. Biochemical analysis of synaptic proteins did not reveal substantial alterations. Our results indicate that over-expression of APOE4 in neurons, using an AAV-mediated approache, is not sufficient to accelerate or otherwise alter the inherent tau pathology that occurs in mice overexpressing mutant human tau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

All the data supporting the conclusions of this article are included within the article and its supplementary information files.

Abbreviations

AAV:

adeno-associated viruses

Aβ:

amyloid β

APOE:

human apolipoprotein E

Apoe:

mouse apolipoprotein E

APOE4 TR:

APOE E4 allele-targeted replacement

AD:

Alzheimer's disease

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CBA:

cytomegalovirus enhancer/chicken β-actin

EGFP:

enhanced green fluorescent protein

GFAP:

glial fibrillary acidic protein

Iba-1:

ionized calcium binding adaptor molecule 1

MAPT:

microtubule-associated protein tau

NFT:

neurofibrillary tangle

PSP:

progressive supranuclear palsy

ptau:

phosphorylated tau

Tg:

transgenic

References

  1. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  2. Leduc V, Jasmin-Bélanger S, Poirier J. (2010) APOE and cholesterol homeostasis in Alzheimer's disease. Trends Mol Med 16:469–477

  3. Huang Y, Mahley RW (2014) Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 72:3–12

    Article  CAS  PubMed  Google Scholar 

  4. Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 106:6820–6825

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang YA, Zhou B, Wernig M, Sudhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Abeta secretion. Cell 168:427–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC et al (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3(89):89ra57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM et al (2009) Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 29:6771–6779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, Harmony JA, Aronow BJ et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

    Article  CAS  PubMed  Google Scholar 

  10. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726

    Article  CAS  PubMed  Google Scholar 

  11. Farfel JM, Yu L, De Jager PL, Schneider JA, Bennett DA (2016) Association of APOE with tau-tangle pathology with and without beta-amyloid. Neurobiol Aging 37:19–25

    Article  CAS  PubMed  Google Scholar 

  12. Hohman TJ, Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, Gifford KA, Bush WS et al (2018) Sex-specific association of apolipoprotein E with cerebrospinal fluid levels of tau. JAMA Neurol 75:989–998

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao N, Liu CC, Van Ingelgom AJ, Linares C, Kurti A, Knight JA, Heckman MG, Diehl NN et al (2018) APOE epsilon2 is associated with increased tau pathology in primary tauopathy. Nat Commun 9:4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  CAS  PubMed  Google Scholar 

  17. Knouff C, Hinsdale ME, Mezdour H, Altenburg MK, Watanabe M, Quarfordt SH, Sullivan PM, Maeda N (1999) Apo E structure determines VLDL clearance and atherosclerosis risk in mice. J Clin Invest 103:1579–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakrabarty P, Rosario A, Cruz P, Siemienski Z, Ceballos-Diaz C, Crosby K, Jansen K, Borchelt DR et al (2013) Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One 8:e67680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koller EJ, Gonzalez De La Cruz E, Machula T, Ibanez KR, Lin W-L, Williams T, Riffe CJ, Ryu D et al (2019) Combining P301L and S320F tau variants produces a novel accelerated model of tauopathy. Hum Mol Genet 28:3255–3269. https://doi.org/10.1093/hmg/ddz151

  20. Kuninaka N, Kawaguchi M, Ogawa M, Sato A, Arima K, Murayama S, Saito Y (2015) Simplification of the modified Gallyas method. Neuropathology 35:10–35

  21. Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, Guimaraes A, Yue M et al (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25(46):10637–10647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piras A, Collin L, Gruninger F, Graff C, Ronnback A (2016) Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun 4:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agosta F, Vossel KA, Miller BL, Migliaccio R, Bonasera SJ, Filippi M, Boxer AL, Karydas A et al (2009) Apolipoprotein E epsilon4 is associated with disease-specific effects on brain atrophy in Alzheimer's disease and frontotemporal dementia. Proc Natl Acad Sci U S A 106:018–022

    Article  Google Scholar 

  24. Wisdom NM, Callahan JL, Hawkins KA (2011) The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. Neurobiol Aging 32:63–74

    Article  CAS  PubMed  Google Scholar 

  25. Kopeikina KJ, Polydoro M, Tai HC, Yaeger E, Carlson GA, Pitstick R, Hyman BT, Spires-Jones TL (2013) Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol 521:1334–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao F, Li A, **ong M, Bien-Ly N, Jiang H, Zhang Y, Finn MB, Hoyle R et al (2018) Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest 128:2144–2155

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim J, Eltorai AE, Jiang H, Liao F, Verghese PB, Kim J, Stewart FR, Basak JM et al (2012) Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Abeta amyloidosis. J Exp Med 209:2149–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geifman N, Brinton RD, Kennedy RE, Schneider LS, Butte AJ (2017) Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer's disease. Alz Res Ther 9:10

    Article  CAS  Google Scholar 

  29. Morris JC, Roe CM, **ong C, Fagan AM, Goate AM, Holtzman DM, Mintun MA (2010) APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 67:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Shaw LM, Trojanowski JQ, Aisen PS, Weiner M et al (2010) Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 67:308–316

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Caselli RJ, Walker D, Sue L, Sabbagh M, Beach T (2010) Amyloid load in nondemented brains correlates with APOE e4. Neurosci Lett 473:168–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mattsson N, Ossenkoppele R, Smith R, Strandberg O, Ohlsson T, Jogi J, Palmqvist S, Stomrud E et al (2018) Greater tau load and reduced cortical thickness in APOE epsilon4-negative Alzheimer's disease: a cohort study. Alz Res Ther 10:77

    Article  CAS  Google Scholar 

  33. Tsuboi Y, Josephs KA, Cookson N, Dickson DW (2003) APOE E4 is a determinant for Alzheimer type pathology in progressive supranuclear palsy. Neurology 6:240–245

    Article  Google Scholar 

  34. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163–166

    Article  CAS  PubMed  Google Scholar 

  35. Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong LM, Jakes R, Huang DY, Pericak-Vance M et al (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci U S A 91(23):11183–11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fleming LM, Weisgraber KH, Strittmatter WJ, Troncoso JC, Johnson GV (1996) Differential binding of apolipoprotein E isoforms to tau and other cytoskeletal proteins. Exp Neurol 138(2):252–260

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Song X, Nisbet R, Gotz J (2016) Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N tau in disease. J Biol Chem 291:8173–8188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW (2001) Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A 98:8838–8843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, Dee FJ, Wyss-Coray T et al (2004) Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 24:2527–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, DiNunno N, Rosario AM et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lesuisse C, Xu G, Anderson J, Wong M, Jankowsky J, Holtz G, Gonzalez V, Wong PC et al (2001) Hyper-expression of human apolipoprotein E4 in astroglia and neurons does not enhance amyloid deposition in transgenic mice. Hum Mol Genet 10:2525–2537

    Article  CAS  PubMed  Google Scholar 

  42. Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26:4985–4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM (2002) Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol Dis 9:305–318

    Article  CAS  PubMed  Google Scholar 

  44. Liao F, Zhang TJ, Jiang H, Lefton KB, Robinson GO, Vassar R, Sullivan PM, Holtzman DM (2015) Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol Commun 3:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eberle D, Kim RY, Luk FS, de Mochel NS, Gaudreault N, Olivas VR, Kumar N, Posada JM et al (2012) Apolipoprotein E4 domain interaction accelerates diet-induced atherosclerosis in hypomorphic Arg-61 apoe mice. Arterioscler Thromb Vasc Biol 32:1116–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T, Morris AW, Bu G (2016) The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 131:709–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01 AG055798, 1RF1 AG057933, and T32 AG061892).

Author information

Authors and Affiliations

Authors

Contributions

PC conceived the study, designed all figures and wrote the manuscript. EJK performed the experiments with help of EGDLC, MW, TW, and PC. JL provided rTg4510 breeders, and PMS provided APOE4 TR mice. PEC cloned APOE4, and DR packaged the AAV. TEG and DRB provided scientific input. EJK, EGDLC, TW, DRB and PC performed data analysis. All authors reviewed the manuscript and approved its final version.

Corresponding author

Correspondence to Paramita Chakrabarty.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animal experiments were approved by the University of Florida IACUC.

Consent for Publication

This manuscript has been approved for publication by all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Analysis of APOE expression in rTg4510 mice expressing AAV-APOE4 and APOE TR mice. Soluble brain fractions of 4–6 month old APOE4 TR mice and 4 month old rTg4510 mice expressing AAV-APOE4 were probed with APOE antibody or actin antibody (A). Quantification of APOE protein band normalized to actin loading control (B). n = 4–5 mice/group. Unpaired t-test. ***p < 0.001. Representative images of 4 month old rTg4510 mouse brains, 4 month old rTg4510 mouse brains expressing AAV-APOE4 or 4 month old APOE TR brains co-immunostained with APOE and NeuN or APOE and GFAP antibodies (C-D). Scale bar: 200 μm; Zoom panel: 25 μm. Total counts of APOE/NeuN positive and APOE/GFAP positive cells from three different brain areas were averaged (E-F). n = 3 mice/group. Kruskal Wallis One way ANOVA with Dunn’s multiple comparisons test. *p < 0.05. Representative images from 4 month old control or AAV-APOE4 expressing rTg4510 mice showing co-immunostaining with ptau (CP13) and APOE antibodies (G). n = 3 mice/group. Scale Bar: 200 μm; Zoom panel: 25 μm. (PNG 943 kb)

High Resolution Image (TIF 14203 kb)

Figure S2

Analysis of AT8 immunoreactivity in rTg4510 mice. Representative images of 4 month old rTg4510 mouse brains (A) or 6 month old rTg4510 mouse brains (D) depicting AT8 ptau (pSer202/Thr205) immunoreactivity from the frontal cortex, motor cortex, auditory cortex, and hippocampal CA1 region. Scale bar: 100 μm. % AT8 immunoreactivity in the cortex (Ctx) and hippocampus (Hpc) is shown (B-C, E-F). n = 5–10 mice/group. Unpaired t test. Black symbols, male mice; gray symbols, female mice. (PNG 509 kb)

High Resolution Image (TIF 9364 kb)

Figure S3

Analysis of tau inclusion and pretangle pathology in rTg4510 mice. Representative images of 4 month old rTg4510 mouse brains or 6 month old rTg4510 mouse brains immunostained with conformational tau antibodies MC1 (A-C, J-L), Alz50 (D-F, M-O) and inclusion pathology marker p62 (G-I, P-R) are shown. Scale Bar, 100 μm. Data is quantified from the cortex (Ctx) and hippocampus (Hpc) as % immunoreactivity. n = 5–10 mice/group. Unpaired t-test. *p < 0.05. Black symbols, male mice; gray symbols, female mice. (PNG 1232 kb)

High Resolution Image (TIF 20965 kb)

Figure S4

APOE levels in AAV-APOE4 transduced PS19 mice. Soluble brain fractions from 3 month old PS19 mice was probed with APOE antibody or Actin antibody (A). Quantification of APOE protein band normalized to actin loading control is shown (B). n = 4 mice/group. Unpaired t-test. ***p < 0.001. (PNG 78 kb)

High Resolution Image (TIF 869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koller, E.J., Gonzalez De La Cruz, E., Weinrich, M. et al. Intracerebral Expression of AAV-APOE4 Is Not Sufficient to Alter Tau Burden in Two Distinct Models of Tauopathy. Mol Neurobiol 57, 1986–2001 (2020). https://doi.org/10.1007/s12035-019-01859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01859-4

Keywords

Navigation