Log in

L-theanine, a Component of Green Tea Prevents 3-Nitropropionic Acid (3-NP)-Induced Striatal Toxicity by Modulating Nitric Oxide Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

L-theanine is unique amino acid which readily crosses blood brain barrier and possesses neuroprotective potential against neurodegenerative disorders including Huntington disease (HD). HD is characterized by selective loss of GABAergic medium spiny neurons. 3-nitropropionic acid (3-NP) induces a spectrum of HD-like neuropathology in rat striatum and widely used as experimental tool to study HD. Therefore, the present study was intended to investigate the effect of L-theanine against 3-NP-induced striatal toxicity and to explore its possible mechanism. Rats were administered with 3-NP for 21 days. L-theanine was given once a day, 1 h prior to 3-NP treatment for 21 days and L-NAME (10 mg/kg, i.p.), NO inhibitor and L-arginine (50 mg/kg; i.p.), NO precursor were administered 1 h prior to L-theanine treatment. Body weight and behavioral observation were made on weekly basis. On the 22nd day, animals were sacrificed, and the striatum was isolated for biochemical (LPO, GSH, and nitrite), pro-inflammatory cytokines and neurochemical analysis. 3-NP treatment significantly altered body weight, locomotor activity, motor coordination, mitochondrial complex-II activity, oxidative defense, pro-inflammatory mediators, and striatal neurotransmitters level. L-theanine pre-treatment (25 and 50 mg/kg/day, p.o.) significantly prevented these alterations. In addition, concurrent treatment of L-NAME with L-theanine (25 mg/kg/day, p.o.) significantly enhanced protective effect of L-theanine (25 mg/kg/day, p.o.) whereas concurrent treatment of L-arginine with L-theanine (50 mg/kg/day, p.o.) significantly ameliorated the protective effect of L-theanine (50 mg/kg/day, p.o.). The neuroprotective potential of L-theanine involves inhibition of detrimental nitric oxide production and prevention of neurotransmitters alteration in the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

3-NP:

3-Nitropropionic acid

5-HIAA:

5-Hydroxy 3-Indole acetic acid

DOPAC:

3,4-dihydroxyphenylacetic acid

HVA:

Homovanillic Acid

HD:

Huntington’s disease

IL:

Inter leukin

MSNs:

Medium spiny neurons

NMDA:

N-methyl d-aspartate

NMDAR:

N-methyl D-aspartate receptor

ROS:

Reactive oxygen species

SDH:

Succinate dehydrogenase

References

  1. Kakuda T (2011) Neuroprotective effects of theanine and its preventive effects on cognitive dysfunction. Pharmacol Res 64(2):162–168

    Article  CAS  PubMed  Google Scholar 

  2. Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3‐Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95(6):1521–1540

    Article  CAS  PubMed  Google Scholar 

  3. Brouillet E (2014) The 3‐NP model of striatal neurodegeneration. Curr Protoc Neurosci 9(48):1–9

    Google Scholar 

  4. Khan A, Jamwal S, Bijjem K, Prakash A, Kumar P (2015) Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience 287:66–77

    Article  CAS  PubMed  Google Scholar 

  5. Jamwal S, Kumar P (2016) Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav 155:180–187

    Article  CAS  PubMed  Google Scholar 

  6. Jamwal S, Singh S, Kaur N, Kumar P (2015) Protective effect of spermidine against excitotoxic neuronal death induced by quinolinic acid in rats: possible neurotransmitters and neuroinflammatory mechanism. Neurotox Res 28(2):171–184

    Article  CAS  PubMed  Google Scholar 

  7. Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3‐nitropropionic acid‐induced Huntington’s disease‐like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164(2b):644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen JY, Wang EA, Cepeda C, Levine MS (2013) Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci. doi:10.3389/fnins.2013.00114

  9. Milnerwood AJ, Gladding CM, Pouladi MA et al (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65(2):178–190

    Article  CAS  PubMed  Google Scholar 

  10. Navailles S, De Deurwaerdère P (2011) Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology 213(2–3):213–242

    Article  CAS  PubMed  Google Scholar 

  11. Kumar P, Kumar P, Khan A, Deshmukh R, Lal Sharma P (2014) Role of neurosteroids in experimental 3-nitropropionic acid induced neurotoxicity in rats. Eur J Pharmacol 723:38–45

    Article  CAS  PubMed  Google Scholar 

  12. Tunez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15(2):878–916

    Article  CAS  PubMed  Google Scholar 

  13. Wills E (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  15. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  16. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  17. Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43(11):913–922

    Article  CAS  PubMed  Google Scholar 

  18. Akula KK, Kaur M, Bishnoi M, Kulkarni SK (2008) Development and validation of an RP‐HPLC method for the estimation of adenosine and related purines in brain tissues of rats. J Sep Sci 31(18):3139–3147

    Article  CAS  PubMed  Google Scholar 

  19. Singh S, Jamwal S, Kumar P (2015) Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: possible neurotransmitters modulation mechanism. Neurochem Res 40(8):1758–1766

    Article  CAS  PubMed  Google Scholar 

  20. Thangarajan S, Deivasigamani A, Natarajan SS, Krishnan P, Mohanan SK (2014) Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum. Int J Neurosci 124(9):673–84

  21. Kim GW, Copin J-C, Kawase M et al (2000) Excitotoxicity is required for induction of oxidative stress and apoptosis in mouse striatum by the mitochondrial toxin, 3-nitropropionic acid. J Cereb Blood Flow Metab 20(1):119–129

    Article  CAS  PubMed  Google Scholar 

  22. Kakuda T, Nozawa A, Sugimoto A, Niino H (2002) Inhibition by theanine of binding of [3H] AMPA,[3H] kainate, and [3H] MDL 105,519 to glutamate receptors. Biosci Biotechnol Biochem 66(12):2683–2686

    Article  CAS  PubMed  Google Scholar 

  23. Blum D, Gall D, Galas MC, d’Alcantara P, Bantubungi K, Schiffmann SN (2002) The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 22:9122–9133

    CAS  PubMed  Google Scholar 

  24. Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN (2003) Adenosine receptors in Huntington’s disease. Lancet Neurol 2:366–374

    Article  CAS  PubMed  Google Scholar 

  25. Kaku T, Hada J, Hayashi Y (1994) Endogenous adenosine exerts inhibitory effects upon the development of spreading depression and glutamate release induced by microdialysis with high K+ in rat hippocampus. Brain Res 658(1):39–48

    Article  CAS  PubMed  Google Scholar 

  26. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79(3):463–484

    Article  CAS  PubMed  Google Scholar 

  27. Kumar P, Kalonia H, Kumar A (2012) Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur J Pharmacol 674(2):265–274

    Article  CAS  PubMed  Google Scholar 

  28. Kakuda T, Yanase H, Utsunomiya K, Nozawa A, Unno T, Kataoka K (2000) Protective effect of γ-glutamylethylamide (theanine) on ischemic delayed neuronal death in gerbils. Neurosci Lett 289(3):189–192

    Article  CAS  PubMed  Google Scholar 

  29. Kiramura R, Murata T (1986) Effect of theanine on norepinephrine and serotonin levels in rat brain. Chem Pharm Bull 34(7):3053–3057

    Article  Google Scholar 

  30. Yokogoshi H, Kobayashi M, Mochizuki M, Terashima T (1998) Effect of theanine, r-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem Res 23(5):667–673

    Article  CAS  PubMed  Google Scholar 

  31. Di X, Yan J, Zhao Y, Zhang J, Shi Z, Chang Y, Zhao B (2010) L-theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience 168(3):778–786

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Li W, Yu H, Yuan R, Yang Y, Pung K, Xue L (2013) Physiological effects of l-theanine on Drosophila melanogaster. Molecules 18(11):13175–13187

    Article  CAS  PubMed  Google Scholar 

  33. Sumathi T, Asha D, Nagarajan G, Sreenivas A, Nivedha R (2016) L-theanine alleviates the neuropathological changes induced by PCB (Aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain. Environ Toxicol Pharmacol 42:99–117

    Article  CAS  PubMed  Google Scholar 

  34. Sumathi T, Shobana C, Thangarajeswari M, Usha R (2015) Protective effect of L-theanine against aluminium induced neurotoxicity in cerebral cortex, hippocampus and cerebellum of rat brain–histopathological, and biochemical approach. Drug Chem Toxicol 38(1):22–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Science and Engineering Board (SERB), Department of Science and Technology, Govt. of India, New Delhi, for providing financial assistance under Fast Track Scheme (DST-SERB-FTYS) to Dr. Puneet Kumar. The Junior Research Fellowship to Mr. Sumit Jamwal is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar.

Ethics declarations

The experimental protocol was reviewed and approved by the Institutional Animal Ethics Committee (ISFCP/IAEC/M5/2012/P39), and experiments were conducted in compliance with the guidelines of the Indian National Science Academy (INSA) for the use and care of experimental animals.

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamwal, S., Kumar, P. L-theanine, a Component of Green Tea Prevents 3-Nitropropionic Acid (3-NP)-Induced Striatal Toxicity by Modulating Nitric Oxide Pathway. Mol Neurobiol 54, 2327–2337 (2017). https://doi.org/10.1007/s12035-016-9822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9822-5

Keywords

Navigation