Log in

Gelatin Nanostructured Lipid Carriers Incorporating Nerve Growth Factor Inhibit Endoplasmic Reticulum Stress-Induced Apoptosis and Improve Recovery in Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Clinical translation of growth factor therapies faces multiple challenges; the most significant one is the short half-life of the naked protein. Gelatin nanostructured lipid carriers (GNLs) had previously been used to encapsulate the basic fibroblast growth factor to enhance the functional recovery in hemiparkinsonian rats. In this research, we comparatively study the enhanced therapy between nerve growth factor (NGF) loaded GNLs (NGF-GNLs) and NGF only in spinal cord injury (SCI). The effects of NGF-GNLs and NGF only were tested by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. Western blot analysis and immunofluorescent staining were further performed to identify the expression of ER stress-related proteins, neuron-specific marker neuronal nuclei (NeuN), and growth-associated protein 43 (GAP43). Correlated downstream signals Akt/GSK-3β and ERK1/2 were also analyzed with or without inhibitors. Results showed that NGF-GNLs, compared to NGF only, enhanced the neuroprotection effect in SCI rats. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 inhibited by NGF-GNL treatment were more obvious. Meanwhile, NGF-GNLs in the recovery of SCI are related to the inhibition of ER stress-induced cell death via the activation of downstream signals PI3K/Akt/GSK-3β and ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tator CH (2006) Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59:957–982

    PubMed  Google Scholar 

  2. Penas C, Guzman MS, Verdu E, Fores J, Navarro X, Casas C (2007) Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 102:1242–1255

    Article  CAS  PubMed  Google Scholar 

  3. Li GL, Brodin G, Farooque M, Funa K, Holtz A, Wang WL, Olsson Y (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55:280–289

    Article  CAS  PubMed  Google Scholar 

  4. Katoh K, Ikata T, Katoh S, Hamada Y, Nakauchi K, Sano T, Niwa M (1996) Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci Lett 216:9–12

    Article  CAS  PubMed  Google Scholar 

  5. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  6. Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X, Ye LB et al (2015) Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol 51:1343–1352

    Article  CAS  PubMed  Google Scholar 

  7. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  8. Soboloff J, Berger SA (2002) Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells. J Biol Chem 277:13812–13820

    Article  CAS  PubMed  Google Scholar 

  9. Ding W, Yang L, Zhang M, Gu Y (2012) Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells. Biochem Biophys Res Commun 418:451–456

    Article  CAS  PubMed  Google Scholar 

  10. Liu XD, Ko S, Xu Y, Fattah EA, **ang Q, Jagannath C, Ishii T, Komatsu M et al (2012) Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress. J Biol Chem 287:19687–19698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larner SF, Hayes RL, Wang KK (2006) Unfolded protein response after neurotrauma. J Neurotrauma 23:807–829

    Article  PubMed  Google Scholar 

  12. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  13. Yang D, Han Y, Zhang J, Chopp M, Seyfried DM (2012) Statins Enhance Expression of Growth Factors and Activate the PI3K/Akt-mediated Signaling Pathway after Experimental Intracerebral Hemorrhage. World J Neurosci 2:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Tong N, Gong Y, Qiu Q, Yin L, Lv X, Wu X (2011) Valproate protects the retina from endoplasmic reticulum stress-induced apoptosis after ischemia-reperfusion injury. Neurosci Lett 504:88–92

    Article  CAS  PubMed  Google Scholar 

  15. Ohri SS, Maddie MA, Zhao Y, Qiu MS, Hetman M, Whittemore SR (2011) Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury. Glia 59:1489–1502

    Article  PubMed  PubMed Central  Google Scholar 

  16. Valenzuela V, Collyer E, Armentano D, Parsons GB, Court FA, Hetz C (2012) Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis 3:e272

    Article  CAS  PubMed  Google Scholar 

  17. Kishi S, Shimoke K, Nakatani Y, Shimada T, Okumura N, Nagai K, Shin-Ya K, Ikeuchi T (2010) Nerve growth factor attenuates 2-deoxy-d-glucose-triggered endoplasmic reticulum stress-mediated apoptosis via enhanced expression of GRP78. Neurosci Res 66:14–21

    Article  CAS  PubMed  Google Scholar 

  18. Zhao YZ, Li X, Lu CT, Lin M, Chen LJ, **ang Q, Zhang M, ** RR et al (2014) Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine 10:755–764

    CAS  PubMed  Google Scholar 

  19. Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461:192–202

    Article  CAS  PubMed  Google Scholar 

  20. Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L et al (2013) Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 48:452–464

    Article  PubMed  Google Scholar 

  21. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  22. Rivlin AS, Tator CH (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47:577–581

    Article  CAS  PubMed  Google Scholar 

  23. de Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77:634–643

    Article  PubMed  Google Scholar 

  24. Szegezdi E, Herbert KR, Kavanagh ET, Samali A, Gorman AM (2008) Nerve growth factor blocks thapsigargin-induced apoptosis at the level of the mitochondrion via regulation of Bim. J Cell Mol Med 12:2482–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mantilla CB, Gransee HM, Zhan WZ, Sieck GC (2013) Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp Neurol 247:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29:14932–14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ansorena E, De Berdt P, Ucakar B, Simon-Yarza T, Jacobs D, Schakman O, Jankovski A, Deumens R et al (2013) Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 455:148–158

    Article  CAS  PubMed  Google Scholar 

  28. Zhao YZ, Tian XQ, Zhang M, Cai L, Ru A, Shen XT, Jiang X, ** RR et al (2014) Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction. J Control Release 186:22–31

    Article  CAS  PubMed  Google Scholar 

  29. Layman H, Spiga MG, Brooks T, Pham S, Webster KA, Andreopoulos FM (2007) The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 28:2646–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ullm S, Kruger A, Tondera C, Gebauer TP, Neffe AT, Lendlein A, Jung F, Pietzsch J (2014) Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials 35:9755–9766

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa S, Kitao Y, Hori O (2007) Ischemia-induced neuronal cell death and stress response. Antioxid Redox Signal 9:573–587

    Article  CAS  PubMed  Google Scholar 

  32. DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264

    Article  CAS  PubMed  Google Scholar 

  34. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  35. Dang AB, Tay BK, Kim HT, Nauth A, Alfonso-Jaume MA, Lovett DH (2008) Inhibition of MMP2/MMP9 after spinal cord trauma reduces apoptosis. Spine (Phila Pa 1976) 33:E576–579

    Article  Google Scholar 

  36. Chen KB, Uchida K, Nakajima H, Yayama T, Hirai T, Watanabe S, Guerrero AR, Kobayashi S et al (2011) Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976) 36:1350–1358

    Article  Google Scholar 

  37. Kim JS, Heo RW, Kim H, Yi CO, Shin HJ, Han JW, Roh GS (2014) Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death. J Neural Transm 121:1233–43

    Article  CAS  PubMed  Google Scholar 

  38. Wang HJ, Cao JP, Yu JK, Zhang LC, Jiang ZJ, Gao DS (2008) Calbindin-D28K expression induced by glial cell line-derived neurotrophic factor in substantia nigra neurons dependent on PI3K/Akt/NF-kappaB signaling pathway. Eur J Pharmacol 595:7–12

    Article  CAS  PubMed  Google Scholar 

  39. Wuhanqimuge IA, Matsuki Y, Tanaka M, Arioka M (2013) Lysophosphatidylcholine enhances NGF-induced MAPK and Akt signals through the extracellular domain of TrkA in PC12 cells. FEBS Open Bio 3:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martin de Saavedra MD, del Barrio L et al (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3beta pathway. Neurochem Int 61:397–404

    Article  CAS  PubMed  Google Scholar 

  41. Zhang HY, Zhang X, Wang ZG, Shi HX, Wu FZ, Lin BB, Xu XL, Wang XJ et al (2013) Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury. CNS Neurosci Ther 19:20–29

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Yan Y, Fu X et al (2012) bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett 212:137–146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health talents (to J. X), National Natural Science Funding of China (81372112, 81200958, 81302775), Zhejiang Natural Science Funding (Y14H170008), State Key Basic Research Development Program (2012CB518105), Ningbo Natural Science Foundation (2012A610255), and Zhejiang undergraduate talent project (2014R413067).

Conflict of Interest

The authors declare no conflict of interest.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at Wenzhou Medical University. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Zi Xu or Jian **ao.

Additional information

Si-Pin Zhu, Zhou-Guang Wang and Ying-Zheng Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, SP., Wang, ZG., Zhao, YZ. et al. Gelatin Nanostructured Lipid Carriers Incorporating Nerve Growth Factor Inhibit Endoplasmic Reticulum Stress-Induced Apoptosis and Improve Recovery in Spinal Cord Injury. Mol Neurobiol 53, 4375–4386 (2016). https://doi.org/10.1007/s12035-015-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9372-2

Keywords

Navigation