Log in

Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Natural polysaccharides are biomaterials widely used for constructing scaffolds in tissue engineering. While natural polysaccharides have been shown to robustly promote tissue regeneration, the underlying molecular mechanism remains largely unknown. Here, we show that chitooligosaccharides (COS), the intermediate products of chitosan degradation, stimulate peripheral nerve regeneration in rats. Our experiment also shows that COS stimulate the proliferation of Schwann cells (SCs) during nerve regeneration. By analyzing the transcriptome and gene regulatory network, we identified the miR-27a/FOXO1 axis as the main signaling pathway for mediating the proliferative effects of COS on SCs. COS increase the expression level of miR-27a and cause a reduction of FOXO1, which subsequently accelerates the cell cycle and stimulates SC proliferation to stimulate nerve regeneration. These findings define a basic pathway for oligosaccharides-mediated cell proliferation and reveal a novel aspect of polysaccharide biomaterials in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gu XS, Ding F, Yang YM, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93(2):204–230

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X (2005) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 128(Pt 8):1897–1910

    Article  PubMed  Google Scholar 

  3. Fan W, Gu J, Hu W, Deng A, Ma Y, Liu J, Ding F, Gu X (2008) Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery 28(4):238–242

    Article  PubMed  Google Scholar 

  4. Yuan Y, Zhang P, Yang Y, Wang X, Gu X (2004) The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18):4273–4278

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Dou S, Li Y, Yuan Y, Ji Y, Wang Y, Yang Y (2013) Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan. Mater Sci Eng C Mater Biol Appl 33(5):2626–2631

    Article  CAS  PubMed  Google Scholar 

  6. Prashanth KVH, Tharanathan RN (2005) Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Bba-Gen Subj 1722(1):22–29

    Article  CAS  Google Scholar 

  7. Jiang M, Zhuge X, Yang Y, Gu X, Ding F (2009) The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 454(3):239–243

    Article  CAS  PubMed  Google Scholar 

  8. Joodi G, Ansari N, Khodagholi F (2011) Chitooligosaccharide-mediated neuroprotection is associated with modulation of Hsps expression and reduction of MAPK phosphorylation. Int J Biol Macromol 48(5):726–735

    Article  CAS  PubMed  Google Scholar 

  9. Yang YM, Wu J, Wang XD, Liu J, Ding F, Gu XS (2009) Fabrication and evaluation of chitin-based nerve guidance conduits used to promote peripheral nerve regeneration. Adv Eng Mater 11(11):B209–B218

    Article  Google Scholar 

  10. Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165(1):105–118

    Article  CAS  PubMed  Google Scholar 

  11. Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9(12):668–676

    Article  CAS  PubMed  Google Scholar 

  12. Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23(6):1041–1048

    Article  CAS  PubMed  Google Scholar 

  13. Jeong HW, Cho SY, Kim S, Shin ES, Kim JM, Song MJ, Park PJ, Sohn JH, Park H, Seo DB, Kim WG, Lee SJ (2012) Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats. PLoS ONE 7(7)

  14. Ohara N, Hayashi Y, Yamada S, Kim SK, Matsunaga T, Yanagiguchi K, Ikeda T (2004) Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 25(10):1749–1754

    Article  CAS  PubMed  Google Scholar 

  15. Gokey NG, Srinivasan R, Lopez-Anido C, Krueger C, Svaren J (2012) Developmental regulation of microRNA expression in Schwann cells. Mol Cell Biol 32(2):558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X (2012) miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40(20):10356–10365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dhadialla PS, Ohiorhenuan IE, Cohen A, Strickland S (2009) Maximum-entropy network analysis reveals a role for tumor necrosis factor in peripheral nerve development and function. Proc Natl Acad Sci U S A 106(30):12494–12499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Liu M, Gu Y, Lin S, Ding F, Gu X (2009) Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol Int 33(3):352–356

    Article  CAS  PubMed  Google Scholar 

  20. Yang YM, Shu RG, Shao J, Xu GF, Gu XX (2006) Radical scavenging activity of chitooligosaccharide with different molecular weights. Eur Food Res Technol 222(1–2):36–40

    Article  CAS  Google Scholar 

  21. Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28(45):11571–11582

    Article  CAS  PubMed  Google Scholar 

  22. Ramoni MF, Sebastiani P, Kohane IS (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A 99(14):9121–9126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freier T, Montenegro R, Shan Koh H, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26(22):4624–4632

    Article  CAS  PubMed  Google Scholar 

  24. Hirano S, Tsuchida H, Nagao N (1989) N-Acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 10(8):574–576

    Article  CAS  PubMed  Google Scholar 

  25. Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52(2):117–126

    Article  CAS  PubMed  Google Scholar 

  26. Carver JP (1993) Oligosaccharides: how can flexible molecules act as signals? Pure Appl Chem 65(4):763–770

    Article  CAS  Google Scholar 

  27. Koeller KM, Wong CH (2000) Emerging themes in medicinal glycoscience. Nat Biotechnol 18(8):835–841

    Article  CAS  PubMed  Google Scholar 

  28. Macmillan D, Daines AM (2003) Recent developments in the synthesis and discovery of oligosaccharides and glycoconjugates for the treatment of disease. Curr Med Chem 10(24):2733–2773

    Article  CAS  PubMed  Google Scholar 

  29. Seeberger PH, Werz DB (2007) Synthesis and medical applications of oligosaccharides. Nature 446(7139):1046–1051

    Article  CAS  PubMed  Google Scholar 

  30. You Y, Park WH, Ko BM, Min BM (2004) Effects of PVA sponge containing chitooligosaccharide in the early stage of wound healing. J Mater Sci Mater Med 15(3):297–301

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    Article  CAS  PubMed  Google Scholar 

  32. Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  Google Scholar 

  33. Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P (1992) Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 12(9):3310–3320

    CAS  PubMed  Google Scholar 

  34. Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G (2001) Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 34(1):8–17

    Article  CAS  PubMed  Google Scholar 

  35. Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS ONE 6(9):e24612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Liu S, Shi R, Zhao G (2011) miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet 204(9):486–491

    Article  CAS  PubMed  Google Scholar 

  37. Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D (2013) MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 288(48):34394–34402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gross DN, van den Heuvel AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336

    Article  CAS  PubMed  Google Scholar 

  40. Lin Q, Gao ZG, Alarcon RM, Ye JP, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Gan L, Pan H, Guo S, He X, Olson ST, Mesecar A, Adam S, Unterman TG (2002) Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 277(47):45276–45284

    Article  CAS  PubMed  Google Scholar 

  42. Perrot V, Rechler MM (2005) The coactivator p300 directly acetylates the Forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 19(9):2283–2298

    Article  CAS  PubMed  Google Scholar 

  43. Huang H, Regan KM, Wang F, Wang DP, Smith DI, van Deursen JMA, Tindall DJ (2005) Skp2 inhibits FOX01 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102(5):1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goto T, Takano M, Albergaria A, Briese J, Pomeranz KM, Cloke B, Fusi L, Feroze-Zaidi F, Maywald N, Sa** M, Dina RE, Ishihara O, Takeda S, Lam EW, Bamberger AM, Ghaem-Maghami S, Brosens JJ (2008) Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene 27(1):9–19

    Article  CAS  PubMed  Google Scholar 

  45. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011

    Article  CAS  PubMed  Google Scholar 

  46. Takano M, Lu Z, Goto T, Fusi L, Higham J, Francis J, Withey A, Hardt J, Cloke B, Stavropoulou AV, Ishihara O, Lam EWF, Unterman TG, Brosens JJ, Kim JJ (2007) Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol 21(10):2334–2349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81371687, 81171457, 81130080, and 31471011), the Ministry of Science and Technology of China Grants (973 Program, 2014CB542202; 863 Program, 2012AA020502), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Conflict of Interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Yang or **aosong Gu.

Additional information

Yongjun Wang and Yahong Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

172 differentially expressed miRNAs (XLS 70 kb)

Table S2

4, 399 differentially expressed mRNAs (XLS 810 kb)

Table S3

Differentially expressed miRNAs with significant P value and their corresponding targets (XLS 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Y., Sun, C. et al. Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis. Mol Neurobiol 53, 28–39 (2016). https://doi.org/10.1007/s12035-014-8968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8968-2

Keywords

Navigation