Log in

The Neuroprotective Effect of Overexpression of Calbindin-D28k in an Animal Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Overexpression of calbindin-D28k (CaBP-28 k) induces neurite outgrowth in dopaminergic neuronal cells and could provide some protection to dopaminergic neurons against the pathological process in Parkinson’s disease. Transgenic mice CaBP-28 k overexpression and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse models were generated, and the effect of midbrain dopamine neurons in ethology was also assessed. Tyrosine hydroxylase (TH)-immunoreactive neurons were counted, and the concentration of total protein and dopamine (DA) of striatum corpora was measured in four animal models. Results showed that the positive TH cells, content of DA, and ability of ethology in MPTP-induced transgenic mice were significantly higher than that in MPTP-induced wild-type mice. The findings demonstrate that overexpression of CaBP-28 k could provide protection for DA neurons from neurodegeneration. It would provide a potential strategy in the treatment of Parkinson’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polymeropulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di IG, Sanges G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Map** of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274:1197–1199

    Article  Google Scholar 

  2. Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Article  PubMed  CAS  Google Scholar 

  3. Slemmer JE, de Zeeuw CI, Weber JT (2005) Don’t get too excited: mechanism of glutamate mediated Purkinje cell death. Prog Brain Res 148:367–390

    Article  PubMed  CAS  Google Scholar 

  4. Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-28 k. Brain Res 526:303–307

    Article  PubMed  CAS  Google Scholar 

  5. Reisner PD, Christakos S, Vanaman TC (1992) In vitro enzyme activation with calbindin-D28k, the vitamin D-dependent 28 kDa calcium binding protein. FEBS Let 297:127–131

    Article  CAS  Google Scholar 

  6. Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 2:601–604

    Article  PubMed  CAS  Google Scholar 

  7. Iacopino AM, Christakos S, German D, Sonsalla PK, Altar CA (1992) Calbindin-D28k-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Mol Brain Res 13:251–261

    Article  PubMed  CAS  Google Scholar 

  8. Ng MC, Iacopino AM, Quintero EM, Marches F, Sonsalla PK, Liang CL, Speciale SG, German DC (1996) The neurotoxin MPTP increases albindin-D28k levels in mouse midbrain dopaminergic neurons. Mol Brain Res 36:329–336

    Article  PubMed  CAS  Google Scholar 

  9. Airaksinen MS, Thoenen H, Meyer M (1997) Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur J Neurosci 9:120–127

    Article  PubMed  CAS  Google Scholar 

  10. Choi WS, Lee E, Lim J, Oh YJ (2008) Calbindin-D28K prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity. Biochem Biophys Res Commun 371:127–131

    Article  PubMed  CAS  Google Scholar 

  11. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  CAS  Google Scholar 

  12. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  13. Lowry DH, Rosebrough HJ, Rarr AL (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  14. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Déglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models Parkinson’s disease. Science 290:767–773

    Article  PubMed  CAS  Google Scholar 

  15. Howard K (2003) First Parkinson gene therapy trial launches. Nat Biotech 21:1117–1118

    Article  CAS  Google Scholar 

  16. Iacopino AM, Quintero ME, Miller EK (1994) Calbindin-D28k: a potential neuroprotective protein. Neurodegeneration 3:1–20

    Google Scholar 

  17. Bellido T, Huening M, Raval-Pandya M, Manolagas SC, Christakos S (2000) Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J Biol Chem 275:26328–26332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (No. 31172171), the Natural Science Foundation of Jiangsu Province (No. BK2010180); the President Foundation of Xuzhou Medical College (No. 2010KJZ10), and Social Development Project of Xuzhou (No. XM09B116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Rong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, HH., Chen, RJ., Zhu, YH. et al. The Neuroprotective Effect of Overexpression of Calbindin-D28k in an Animal Model of Parkinson’s Disease. Mol Neurobiol 47, 117–122 (2013). https://doi.org/10.1007/s12035-012-8332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8332-3

Keywords

Navigation