Log in

Structural, optical, electrical and catalytic properties of precursor solution-aged spray deposited undoped, Zn-doped and Ag-doped CdO thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic performance of precursor solution-aged undoped, Zn-doped CdO (CdO:Zn) and Ag-doped CdO (CdO:Ag) thin films has been reported in this paper. Perfume atomizer is adopted to deposit the films. CdO, CdO:Zn and CdO:Ag thin films exhibit cubic crystal structure. The crystallite size values were 34, 31 and 27 nm, respectively, for the CdO, CdO:Zn and CdO:Ag thin films. In the EDX spectra of the CdO:Zn and CdO:Ag thin films, Zn and Ag were observed along with Cd and O. The CdO:Zn and CdO:Ag thin films exhibit increased transparency and widened band gap values. PL spectra showed peaks related to oxygen vacancies for all the films. Reduced resistivity was evinced for the CdO:Zn and CdO:Ag thin films. The degradation efficiencies of the CdO, CdO:Zn and CdO:Ag thin films against methyl orange after 75 min light exposure were 76.4, 84.3 and 90.4%, respectively. The CdO:Zn and CdO:Ag catalysts exhibit satisfactory stability with better reusable nature and are suitable for the effective treatment of organic toxic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Usharani K, Balu A R, Nagarethinam V S and Suganya M 2015 Prog. Nat. Sci. Mater. Int. 25 251

    CAS  Google Scholar 

  2. Tadjarodi A, Imani M and Kerdari H 2013 Mater. Res. Bull. 48 935

    CAS  Google Scholar 

  3. Balamurugan S, Balu A R, Usharani K, Suganya M, Anitha S, Prabha D et al 2016 Pac. Sci. Rev. A 18 228

    Google Scholar 

  4. Nagabhushana H, Basavaraj R B, Daruka Prasad B, Sharma S C, Premkumar H B, Udhayabhanu et al 2017 J. Alloys Compd. 669 232

    Google Scholar 

  5. Sivakumar S, Venkatesan A, Soundhirarajan P and Khatiwada C P 2015 Spectrochim. Acta A: Mol. Biomol. Spect. 151 760

    CAS  Google Scholar 

  6. Nallendran R, Selvan G and Balu A R 2019 Surf. Interfaces 15 11

    CAS  Google Scholar 

  7. Turgut G and Tatar D 2017 Optik 145 292

    CAS  Google Scholar 

  8. Imer A G 2016 Superlattices Microstruct. 92 278

    Google Scholar 

  9. Yahia I S, Salem G F, Iqbal J and Yakuphanoglu F 2017 Physica B 511 54

    CAS  Google Scholar 

  10. Manjula N, Pugalenthi M, Nagarethinam V S, Usharani K and Balu A R 2015 Mater. Sci. Poland 33 774

    CAS  Google Scholar 

  11. Gulen Y, Sahin B, Bayansal F and Cetinkara H A 2014 Superlattices Microstruct. 68 48

    CAS  Google Scholar 

  12. Alahmed Z A, Albrithen H A, Al-Ghamdi A A and Yakuphanoglu F 2015 Optik 126 575

    CAS  Google Scholar 

  13. Khallaf H, Chen C T, Chang L B, Lupan O, Dutta A, Heinrich H et al 2011 Appl. Surf. Sci. 257 9237

    CAS  Google Scholar 

  14. Usharani K, Manjula N, Balu A R and Nagarethinam V S 2016 Mater. Res. Innov. 20 182

    CAS  Google Scholar 

  15. Raja N, Baskaran R, Nagarethinam V S and Balu A R 2016 Optik 127 10602

    CAS  Google Scholar 

  16. El-Denglawey A, Makhlouf M M and Dongol M 2016 J. Non-Cryst. Sol. 449 34

    CAS  Google Scholar 

  17. Selvan G, Abubacker M P, Usharani K and Balu A R 2015 Surf. Eng32 212

    Google Scholar 

  18. Raja N, Nagarethinam V S and Balu A R 2019 Mater. Sci. Poland 37 1

    CAS  Google Scholar 

  19. Balamurugan S, Balu A R, Srivind J, Usharani K, Narasimman V, Suganya M et al 2019 Vacuum 159 9

    CAS  Google Scholar 

  20. Turgut G, Aksoy G, Iskenderoglu D, Turgut U and Duman S 2018 Ceram. Int. 44 3921

    CAS  Google Scholar 

  21. Xu H Y, Liu Y C, Xu C S, Liu Y X, Saho C L and Mu R 2006 Appl. Phys. Lett. 88 242502

    Google Scholar 

  22. Aydin R and Sahin B 2017 Ceram. Int. 43 9285

    CAS  Google Scholar 

  23. Usharani K and Balu A R 2016 J. Mater. Sci.: Mater. Electron 27 2071

    CAS  Google Scholar 

  24. Ali T, Ahmed A, Alam U, Uddin I, Tripathi P and Muneer M 2018 Mater. Chem. Phys. 212 325

    CAS  Google Scholar 

  25. Suganya M, Prabha D, Anitha S, Srivind J, Balamurugan S, Nagarethinam V S et al 2017 J. Mater. Sci.: Mater. Electron. 28 12348

    CAS  Google Scholar 

  26. Suganya M, Balu A R, Prabha D, Anitha S, Balamurugan S and Srivind J 2018 J. Mater. Sci.: Mater. Electron. 29 1065

    CAS  Google Scholar 

  27. Suganya M, Prabha D, Balamurugan S and Balu A R 2016 J. Mater. Sci.: Mater. Electron. 28 5344

    Google Scholar 

  28. **g Z, Tan L, Li F, Wang J, Fu Y and Qian L 2013 Ind. J. Chem. A 52 57

    Google Scholar 

  29. Prabha D, Ilangovan S, Srivind J, Suganya M, Anitha S, Balamurugan S et al 2017 J. Mater. Sci.: Mater. Electron. 28 15556

    CAS  Google Scholar 

  30. da Conceicao B M, Costa M A S, de Santa Maria L C, Silva M R and Wang S H 2011 Polimeros 21 409

    Google Scholar 

  31. Anitha S, Suganya M, Prabha D, Srivind J, Balamurugan S and Balu A R 2018 Mater. Chem. Phys.211 88

    CAS  Google Scholar 

  32. Selvan G, Abubacker M P and Balu A R 2017 J. Mater. Sci.: Mater. Electron. 28 2335

    CAS  Google Scholar 

  33. Usharani K, Balu A R and Nagarethinam V S 2016 Surf. Eng. 32 829

    CAS  Google Scholar 

  34. Gu F, Wany S F, Lu M K, Zhou G J, Xu D and Yuan D R 2004 J. Phys. Chem. B 108 8119

    CAS  Google Scholar 

  35. Nallendran R, Selvan G and Balu A R 2019 J. Electron. Mater. 48 3676

    CAS  Google Scholar 

  36. Fang Z, Wang Y, Xu D, Tan Y and Liu X 2004 Opt. Mater. 26 239

    CAS  Google Scholar 

  37. ** B J, Woo H S, Im S, Bae S H and Lee S Y 2001 Appl. Surf. Sci. 169–170 521

    Google Scholar 

  38. Manjula N, Suganya M, Prabha D, Balamurugan S, Srivind J, Nagarethinam V S et al 2017 J. Mater. Sci.: Mater. Electron. 28 7615

    CAS  Google Scholar 

  39. Li G, Zhu X, Tang X, Song W, Yang Z, Dai J et al 2011 J. Alloys Compd. 509 4816

    CAS  Google Scholar 

  40. Li D, Huang J F, Cao L Y, Li J Y, OuYang H-B, Yao C-Y et al 2014 Ceram. Int. 40 2647

  41. Sharma R, Bansal S and Singhal S 2015 RSC Adv. 5 6006

    CAS  Google Scholar 

  42. Elsellami L, Dappozze F, Houas A and Guillard C 2017 Superlettices Microstruct. 109 511

    CAS  Google Scholar 

  43. Motevalli K, Ebadi M and Saehi Z 2017 J. Mater. Sci.: Mater. Electron. 28 13024

    CAS  Google Scholar 

  44. Ben Ameur S, Bel Hadjltaief H, Barhoumi A, Duponchel B, Leroy G, Amlouk M et al 2018 Vacuum 155 146

    Google Scholar 

Download references

Acknowledgements

The HOD of Physics, Alagappa University, Karaikudi is very much thanked for the XRD and PL studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Balu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, N., Nagarethinam, V.S., Manjula, N. et al. Structural, optical, electrical and catalytic properties of precursor solution-aged spray deposited undoped, Zn-doped and Ag-doped CdO thin films. Bull Mater Sci 43, 117 (2020). https://doi.org/10.1007/s12034-020-02088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02088-5

Keywords

Navigation