Log in

A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Single-domain antigen-binding fragments of camelid antibodies, known as VHHs or nanobodies, are widely used affinity reagents. However, their production involving animal immunization is time- and resource-intensive. Starting from a sequence dataset of llama VHHs, we designed a novel scaffold, based on conserved framework sequences, suitable for bacterial nanobody expression and synthetic library construction. The consensus scaffold was validated by grafting the CDRs from two known nanobodies. While maintaining their binding properties, the two chimeric nanobodies showed higher levels of expression and solubility in E. coli when compared to the corresponding wild types. A proof-of-concept synthetic combinatorial library, suitable for ribosome display (RD) selection, was obtained by encoding three randomized complementarity determining regions within the consensus framework. The library, made of linear DNA fragments, has an estimated complexity of > 1012 that is three orders of magnitude higher than common phage display libraries. The bacterial expression of several library clones showed a high production of soluble recombinant proteins. The high complexity of the library, confirmed by sequencing of a subset of clones, as well as a preliminary RD selection of a maltose binding protein binder, indicated this approach as a starting point in the construction of synthetic combinatorial libraries to be used as animal-free tools for the low-cost selection of target-specific nanobodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E. B., et al. (1993). Naturally occurring antibodies devoid of light chains. Nature,363(6428), 446–448. https://doi.org/10.1038/363446a0.

    Article  CAS  PubMed  Google Scholar 

  2. Oliveira, S., Heukers, R., Sornkom, J., Kok, R. J., & Van Bergen En Henegouwen, P. M. P. (2013). Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2013.08.298.

    Article  PubMed  Google Scholar 

  3. Smolarek, D., Bertrand, O., & Czerwinski, M. (2012). Variable fragments of heavy chain antibodies (VHHs): A new magic bullet molecule of medicine? Postepy Higieny i Medycyny Doswiadczalnej,66, 348–358. https://doi.org/10.5604/17322693.1000334.

    Article  PubMed  Google Scholar 

  4. Muyldermans, S., Baral, T. N., Retamozzo, V. C., De Baetselier, P., De Genst, E., Kinne, J., et al. (2009). Camelid immunoglobulins and nanobody technology. Veterinary Immunology and Immunopathology. https://doi.org/10.1016/j.vetimm.2008.10.299.

    Article  PubMed  Google Scholar 

  5. Harmsen, M. M., & De Haard, H. J. (2007). Properties, production, and applications of camelid single-domain antibody fragments. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-007-1142-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lauwereys, M., Ghahroudi, M. A., Desmyter, A., Genst, E. De, Wyns, L., & Muyldermans, S. (1998). Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. Early Intervention in Psychiatry,17(13), 3512–3520.

    CAS  Google Scholar 

  7. De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., et al. (2006). Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proceedings of the National Academy of Sciences,103(12), 4586–4591. https://doi.org/10.1073/pnas.0505379103.

    Article  CAS  Google Scholar 

  8. Chakravarty, R., Goel, S., & Cai, W. (2014). Nanobody: The “magic bullet” for molecular imaging? Theranostics. https://doi.org/10.7150/thno.8006.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hassanzadeh-Ghassabeh, G., Devoogdt, N., De Pauw, P., Vincke, C., & Muyldermans, S. (2013). Nanobodies and their potential applications. Nanomedicine. https://doi.org/10.2217/nnm.13.86.

    Article  PubMed  Google Scholar 

  10. De Meyer, T., Muyldermans, S., & Depicker, A. (2014). Nanobody-based products as research and diagnostic tools. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2014.03.001.

    Article  PubMed  Google Scholar 

  11. Desmyter, A., Spinelli, S., Roussel, A., & Cambillau, C. (2015). Camelid nanobodies: Killing two birds with one stone. Current Opinion in Structural Biology,32, 1–8. https://doi.org/10.1016/j.sbi.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  12. Olichon, A., & De Marco, A. (2012). Preparation of a naïve library of camelid single domain antibodies. Methods in Molecular Biology. https://doi.org/10.1007/978-1-61779-968-6_5.

    Article  PubMed  Google Scholar 

  13. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlkönig, A., Ruf, A., et al. (2014). A general protocol for the generation of Nanobodies for structural biology. Nature Protocols. https://doi.org/10.1038/nprot.2014.039.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verheesen, P., Roussis, A., de Haard, H. J., Groot, A. J., Stam, J. C., den Dunnen, J. T., et al. (2006). Reliable and controllable antibody fragment selections from Camelid non-immune libraries for target validation. Biochimica et Biophysica Acta - Proteins and Proteomics. https://doi.org/10.1016/j.bbapap.2006.05.011.

    Article  Google Scholar 

  15. Monegal, A., Ami, D., Martinelli, C., Huang, H., Aliprandi, M., Capasso, P., et al. (2009). Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library. Protein Engineering, Design & Selection. https://doi.org/10.1093/protein/gzp002.

    Article  Google Scholar 

  16. Kehoe, J. W., & Kay, B. K. (2005). Filamentous phage display in the new millennium. Chemical Reviews. https://doi.org/10.1021/cr000261r.

    Article  PubMed  Google Scholar 

  17. Moutel, S., Bery, N., Bernard, V., Keller, L., Lemesre, E., De Marco, A., et al. (2016). NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife,5, 1–31. https://doi.org/10.7554/eLife.16228.

    Article  CAS  Google Scholar 

  18. McMahon, C., Baier, A. S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J. X., et al. (2018). Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural & Molecular Biology,25(3), 289–296. https://doi.org/10.1038/s41594-018-0028-6.

    Article  CAS  Google Scholar 

  19. Koide, A., Tereshko, V., Uysal, S., Margalef, K., Kossiakoff, A. A., & Koide, S. (2007). Exploring the capacity of minimalist protein interfaces: Interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope. Journal of Molecular Biology. https://doi.org/10.1016/j.jmb.2007.08.027.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Plückthun, A. (2012). Ribosome display: A perspective. Methods in Molecular Biology. https://doi.org/10.1007/978-1-61779-379-0_1.

    Article  PubMed  Google Scholar 

  21. Yau, K. Y. F., Groves, M. A. T., Li, S., Sheedy, C., Lee, H., Tanha, J., et al. (2003). Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. Journal of Immunological Methods,281(1–2), 161–175. https://doi.org/10.1016/j.jim.2003.07.011.

    Article  CAS  PubMed  Google Scholar 

  22. Li, R., Kang, G., Hu, M., & Huang, H. (2019). Ribosome display: A potent display technology used for selecting and evolving specific binders with desired properties. Molecular Biotechnology,61(1), 60–71. https://doi.org/10.1007/s12033-018-0133-0.

    Article  CAS  PubMed  Google Scholar 

  23. Schaffitzel, C., Hanes, J., Jermutus, L., & Plückthun, A. (1999). Ribosome display: An in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods. https://doi.org/10.1016/S0022-1759(99)00149-0.

    Article  PubMed  Google Scholar 

  24. Sambrook, J., & W Russell, D. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  25. Gorlani, A., Adams, H., Hermans, P., & Verrips, T. (2011). Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae. Protein Engineering, Design & Selection. https://doi.org/10.1093/protein/gzr057.

    Article  Google Scholar 

  26. Crameri, A., Whitehorn, E. A., Tate, E., & Stemmer, W. P. C. (1996). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology. https://doi.org/10.1038/nbt0396-315.

    Article  PubMed  Google Scholar 

  27. Amstutz, P., Binz, H. K., Parizek, P., Stumpp, M. T., Kohl, A., Grütter, M. G., et al. (2005). Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M501746200.

    Article  PubMed  Google Scholar 

  28. Hanes, J., & Plückthun, A. (1997). In vitro selection and evolution of functional proteins by using ribosome display. Proceedings of the National academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.94.10.4937.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huber, T., Steiner, D., Röthlisberger, D., & Plückthun, A. (2007). In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na + -citrate symporter CitS as an example. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2007.01.013.

    Article  PubMed  Google Scholar 

  30. Zahnd, C., Amstutz, P., & Plückthun, A. (2007). Ribosome display: Selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods. https://doi.org/10.1038/nmeth1003.

    Article  PubMed  Google Scholar 

  31. Milovnik, P., Ferrari, D., Sarkar, C. A., & Plückthun, A. (2009). Selection and characterization of DARPins specific for the neurotensin receptor 1. Protein Engineering, Design & Selection,22(6), 357–366. https://doi.org/10.1093/protein/gzp011.

    Article  CAS  Google Scholar 

  32. Sehr, P., Zumbach, K., & Pawlita, M. (2001). A generic capture ELISA for recombinant proteins fused to glutathione S-transferase: Validation for HPV serology. Journal of Immunological Methods,253(1–2), 153–162. https://doi.org/10.1016/S0022-1759(01)00376-3.

    Article  CAS  PubMed  Google Scholar 

  33. Muyldermans, S. (2013). Nanobodies: Natural single-domain antibodies. Annual Review of Biochemistry. https://doi.org/10.1146/annurev-biochem-063011-092449.

    Article  PubMed  Google Scholar 

  34. Kirchhofer, A., Helma, J., Schmidthals, K., Frauer, C., Cui, S., Karcher, A., et al. (2010). Modulation of protein properties in living cells using nanobodies. Nature Structural & Molecular Biology. https://doi.org/10.1038/nsmb.1727.

    Article  Google Scholar 

  35. Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., & Conrath, K. (2009). General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. Journal of Biological Chemistry,284(5), 3273–3284. https://doi.org/10.1074/jbc.M806889200.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, J. L., Goldman, E. R., Zabetakis, D., Walper, S. A., Turner, K. B., Shriver-Lake, L. C., et al. (2015). Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microbial Cell Factories. https://doi.org/10.1186/s12934-015-0340-3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harmsen, M. M., Ruuls, R. C., Nijman, I. J., Niewold, T. A., Frenken, L., & Geus, D. (2001). Llama heavy chain V-regions consist of at least four distinct subfamilies revealing novel sequence features. Molecular Immunology,37(2000), 579–590.

    Google Scholar 

  38. Saerens, D., Pellis, M., Loris, R., Pardon, E., Dumoulin, M., Matagne, A., et al. (2005). Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. Journal of Molecular Biology,352(3), 597–607. https://doi.org/10.1016/j.jmb.2005.07.038.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell, L. S., & Colwell, L. J. (2018). Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Engineering, Design & Selection. https://doi.org/10.1093/protein/gzy017.

    Article  Google Scholar 

  40. Yan, J., Li, G., Hu, Y., Ou, W., & Wan, Y. (2014). Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. Journal of Translational Medicine. https://doi.org/10.1186/s12967-014-0343-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang, H. Y., Kang, K. J., Chung, J. E., & Shim, H. (2009). Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Molecules and Cells. https://doi.org/10.1007/s10059-009-0028-9.

    Article  PubMed  Google Scholar 

  42. Virnekas, B., Ge, L., Plukthun, A., Schneider, K. C., Wellnhofer, G., & Moroney, S. E. (1994). Trinucleotide phosphoramidites: Ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Research. https://doi.org/10.1093/nar/22.25.5600.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

V.G. is the recipient of a PhD student fellowship from the Fondazione Cariparma. This work was supported in part by a grant from Regione Emilia-Romagna, Italy (Programma di Ricerca Regione-Università 2010-2012; PRUa1RI-2012-006). Support from the Interuniversity Consortium for Biotechnologies (CIB) and European Molecular Biology Organization (EMBO) is also gratefully acknowledged.

Funding

This work has benefited from the equipment and framework of the COMP-HUB Initiative, funded by the ‘Departments of Excellence’ program of the Italian Ministry for Education, University, and Research (MIUR, 2018-2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ferrari.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, D., Garrapa, V., Locatelli, M. et al. A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries. Mol Biotechnol 62, 43–55 (2020). https://doi.org/10.1007/s12033-019-00224-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00224-z

Keywords

Navigation