Log in

Genetic Relationships Among Wild and Cultivated Accessions of Curry Leaf Plant (Murraya koenigii (L.) Spreng.), as Revealed by DNA Fingerprinting Methods

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard’s similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anonymous. (1962). The Wealth of India: raw material, VI (L–M). Publication and Information Directorate (CSIR), New Delhi, India.

  2. Chopra, R. N., Nayar, S. L., & Chopra, I. C. (1996). Glossary of Indian Medicinal Plants. New Delhi: Council of Scientific and Industrial Research.

    Google Scholar 

  3. Dastur, J. F. (1970). Medicinal plants of India and Pakistan (3rd ed., p. 115). Bombay: Taraporevala Sons.

    Google Scholar 

  4. Drury, H. C. (1978). The useful plants of India (2nd ed., p. 78). London: Allen.

    Google Scholar 

  5. Joseph, S., & Peter, K. V. (1985). Curry leaf (Murraya koenigii), perennial, nutritious, leafy vegetable. Economic Botany, 39(1), 68–73.

    Article  Google Scholar 

  6. Kirtikar, K. R., & Basu, B. D. (1935). Indian medicinal plants. Allahabad: Lalit Mohan Basu Publications.

    Google Scholar 

  7. Warman, C. K. (1999). Trees of India: A colour altas. New Delhi: CBS Publishers.

    Google Scholar 

  8. Chopra, R. N., Chopra, I. C., & Verma, B. S. (1958). Indigenous drugs of India. India: Calcutta.

    Google Scholar 

  9. Yusuf, M., Chowdhury, J. U., Wahab, M. A., & Begum, J. (1994). Medicinal plants of Bangladesh. Chittagong: BCSIR Laboratories.

    Google Scholar 

  10. Kong, Y. C., Cheng, K. F., Ng, K. M., But, P. P. H., Li, Q., Yu, S. X., et al. (1986). A chemotaxonomic division of Murraya based on the distribution of the alkaloids yuehchukene and girinimbine. Biochemical Systematics and Ecology, 14, 491–497.

    Article  CAS  Google Scholar 

  11. Rana, V. S., Juyala, J. P., Rashmi, M., & Blazquez, A. (2004). Chemical constituents of the volatile oil of Murraya koenigii leaves. The International Journal of Aromatherapy, 14, 23–25.

    Article  CAS  Google Scholar 

  12. Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L., & Nitiss, J. L. (1999). Biologically active carbazole alkaloids from Murraya koenigii. Journal of Agriculture and Food Chemistry, 47, 444–447.

    Article  CAS  Google Scholar 

  13. Chakraborty, D. P. (1993). Chemistry and biology of carbazole alkaloids. In G. A. Cordell (Ed.), The Alkaloids (Vol. 44). New York: Academic Press.

    Google Scholar 

  14. Ito, C., Furukawa, H., Ishii, H., Ishikawa, T., & Haginiwa, J. (1990). The chemical composition of Murraya paniculata. The structure of five new coumarins and one new alkaloid and the stereochemistry of murrangatin and related coumarins. Journal of Chemical Society, 17, 2047–2055.

    Google Scholar 

  15. Khan, B. A., Abraham, A., & Leelamma, S. (1995). Hypoglycemic action of Murraya koenigii (curry leaf) and Brassica juncea (mustard): Mechanism of action. Indian Journal of Biochemical Biophysics, 32, 106–108.

    CAS  Google Scholar 

  16. Deshmukh, S. K., Jain, P. C., & Agarwal, S. C. (1986). Antimicrobial activity of the essential oil of the leaves of Murraya koenigii (L.)Spreng. (Indian Curry leaf). Fitoterapia, 57(7), 295–297.

    Google Scholar 

  17. Pathak, N., Yadav, T. D., Jha, A. N., Vasudevan, P., & Pathak, N. (1997). Contact and fumigant action of volatile essential oil of the leaves of Murraya koenigii against Callosobruchus chinensis. Indian Journal of Entomology, 59(2), 198–202.

    Google Scholar 

  18. Nair, K. N., & Nayar, M. P. (1997). Rutaceae. In P. K. Hajra, V. J. Nair, & P. Daniel (Eds.), The Flora of India (Vol. 4, pp. 259–408). BSI, Calcutta.

    Google Scholar 

  19. Bimbiraite, K., Ragazinskiene, O., Maruska, A., & Kornysova, O. (2008). Comparison of the chemical composition of four yarrow (Achillea millefolium L.) morphotypes. Biologia, 54(3), 208–212.

    Article  Google Scholar 

  20. Pezhmanmehr, M., Hassani, M. S., Jahansooz, F., Najafi, A. A., Sefidkon, F., Mardi, M., & Pirseiedi, M. (2009). Assessment of genetic diversity in some Iranian populations of Bunium persicum using RAPD and AFLP markers. Iranian Journal of Biotechnology, 7(2), 93–100.

    CAS  Google Scholar 

  21. Manica-Cattani, M., F., Zacaria, J., Pauletti, G., Atti-Serafini, L., & Echeverrigaray, S. (2009). Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Brazilian Journal of Biology, 69, 375–380.

    Article  CAS  Google Scholar 

  22. Nan, P., Peng, S., Shi, S., Ren, H., Yang, J., & Zhong, Y. (2003). Interpopulation congruence in Chinese Primula ovalifolia revealed by chemical and molecular markers using essential oils and ISSRs. Journal of Biosciences, 58(1–2), 57–61.

    Google Scholar 

  23. Fracaro, F., Zacaria, J., & Echeverrigaray, S. (2005). RAPD based genetic relationships between populations of three chemotypes of Cunila galioides Benth. Biochemical Systematics and Ecology, 33(4), 409–417.

    Article  CAS  Google Scholar 

  24. Mattioni, C., Casasoli, M., Gonzalez, M., & Ipinza, R. (2002). Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theoretical and Applied Genetics, 104(6–7), 1064–1070.

    CAS  Google Scholar 

  25. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  Google Scholar 

  26. Heath, D. D., Iwama, G. K., & Devlin, R. H. (1993). PCR primed with the VNTR core sequences yields species specific patterns and hypervariable probes. Nucleic Acids Research, 21, 5782–5785.

    Article  CAS  Google Scholar 

  27. Prevost, A., & Wilkinson, M. J. (1999). A new system comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107–112.

    Article  CAS  Google Scholar 

  28. Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.

    Article  CAS  Google Scholar 

  29. Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Hypervariable (minisatellite) region in human DNA. Nature, 314, 67–73.

    Article  CAS  Google Scholar 

  30. Tsumura, Y. O., & Strauss, S. H. (1996). Diversity and inheritance of Inter-simple repeat polymorphism in Douglas for (Pseudotsuga menziesii) and Sugi (Crypromeria japonica). Theoretical and Applied Genetics, 92, 40–45.

    Article  CAS  Google Scholar 

  31. Zietkiewicz, E., Rafalski, A., & Labuba, D. (1994). Genome fingerprinting by simple sequence repeat amplification. Genetics, 20, 176–183.

    CAS  Google Scholar 

  32. Ranade, S. A., Rana, T. S., Srivastava, A. P., & Nair, K. N. (2006). Molecular differentiation in Murraya Koenig ex L., species in India inferred through ITS RAPD and DAMD analysis. Current Science, 90, 1253–1258.

    Google Scholar 

  33. Verma, S., Rana, T. S., & Ranade, S. A. (2009). Genetic variation and clustering in Murraya paniculata complex as revealed by single primer amplification reaction methods. Current Science, 96, 1210–1216.

    CAS  Google Scholar 

  34. Verma, S., & Rana, T. S. (2011). Genetic diversity within and among the wild populations of Murraya koenigii (L.)Spreng., as revealed by ISSR analysis. Biochemical Systematics and Ecology, 39, 139–144.

    Article  CAS  Google Scholar 

  35. Zhou, Z., Bebeli, P. J., Somers, D. J., & Gustafson, J. P. (1997). Direct amplification of minisatellite-region DNA with VNTR core sequences in the genus Oryza. Theoretical and Applied Genetics, 95, 942–949.

    Article  CAS  Google Scholar 

  36. Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de Societe des Vaudoise Sci. Nature, 44, 223-270. 47, 444–447.

    Google Scholar 

  37. Pavlicek, A., Hrda, S., & Flegr, J. (1999). Free Tree—Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap**/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica (Praha.), 45, 97–99. http://www.natur.cuni.cz/flegr/programs/freetree.htm.

  38. Rohlf, F. J. (1998). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.02e. Applied Biostatistics Inc., Exeter Software, Setauket, New York.

  39. Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292.

    Article  Google Scholar 

  40. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  41. Yeh, F. C., Yang, R. C., & Boyle, T. (1997). POPGENE—ver. 1.32 (32 bit): a microsoft windows-based freeware for population genetic analysis. Available from http://www.ualberta.ca/feyeh.

  42. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.

    Article  CAS  Google Scholar 

  43. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.

    CAS  Google Scholar 

  44. Parsons, B. J., Newbury, H. J., Jackson, M. T., & Ford-Lloyd, B. V. (1997). Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Molecular Breeding, 3, 115–125.

    Article  CAS  Google Scholar 

  45. Liu, Z., & Furnier, G. R. (1993). Comparison of allozyme, RFLP and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theoretical and Applied Genetics, 87, 97.

    CAS  Google Scholar 

  46. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583.

    CAS  Google Scholar 

  47. Raina, V. K., Lal, R. K., Tripathi, S., Khan, M., Syamasundar, K. V., & Srivastava, S. K. (2002). Essential oil composition of genetically diverse stocks of Murraya koenigii from India. Flavour Fragrance Journal, 17, 144–146.

    Article  CAS  Google Scholar 

  48. Huh, M. K., Lee, H. Y., & Lee, B. K. (2004). Genetic diversity and relationships between wild and cultivated populations of the sea lettuce, Enteromorpha prolifera Korea revealed by RAPD markers. Protistology, 3(4), 243–250.

    Google Scholar 

  49. Desplanque, B. P., Boudry, K., & Broomberg, P. (1999). Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theoretical and Applied Genetics, 98, 1194–1201.

    Article  CAS  Google Scholar 

  50. Zhou, H. T., Hu, S. L., & Guo, B. L. (2002). A study on genetic variation between wild and cultivated populations of Paeonia lactiflora Pall. Acta Pharmaceutica Sinica (in Chinese), 37(5), 383–388.

    CAS  Google Scholar 

  51. Ma, X. J., Wang, X. Q., & Sun, S. S. (1999). A study on RAPD fingerprintings of wild mountain Ginseng (Panax ginseng). Acta Pharmaceutica Sinica (in Chinese), 34(4), 312–316.

    CAS  Google Scholar 

  52. Ma, X. J., Wang, X. Q., & Xu, Z. X. (2000). RAPD variation within and among populations of Ginseng cultivars. Acta Pharmaceutica Sinica (in Chinese), 42(6), 587–590.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-National Botanical Research Institute, Lucknow for facilities and encouragements. Partial financial support from the Department of Science and Technology, New Delhi (to TSR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S., Rana, T.S. Genetic Relationships Among Wild and Cultivated Accessions of Curry Leaf Plant (Murraya koenigii (L.) Spreng.), as Revealed by DNA Fingerprinting Methods. Mol Biotechnol 53, 139–149 (2013). https://doi.org/10.1007/s12033-012-9500-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9500-4

Keywords

Navigation