Log in

G protein-coupled estrogen receptor (GPER) mediates NSCLC progression induced by 17β-estradiol (E2) and selective agonist G1

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Estrogen classically drives lung cancer development via estrogen receptor β (ERβ). However, fulvestrant, an anti-estrogen-based endocrine therapeutic treatment, shows limited effects for non-small cell lung cancer (NSCLC) in phase II clinical trials. G protein-coupled estrogen receptor (GPER), a third estrogen receptor that binds to estrogen, has been found to be activated by fulvestrant, stimulating the progression of breast, endometrial, and ovarian cancers. We here demonstrated that cytoplasm-GPER (cGPER) (80.49 %) and nucleus-GPER (53.05 %) were detected by immunohistochemical analysis in NSCLC samples. cGPER expression was related to stages IIIA–IV, lymph node metastasis, and poorly differentiated NSCLC. Selective agonist G1 and 17β-estradiol (E2) promoted the GPER-mediated proliferation, invasion, and migration of NSCLC cells. Additionally, in vitro administration of E2 and G1 increased the number of tumor nodules, tumor grade, and tumor index in a urethane-induced adenocarcinoma model. Importantly, the pro-tumorigenic effects of GPER induced by E2 were significantly reduced by co-administering the GPER inhibitor G15 and the ERβ inhibitor fulvestrant, as compared to administering fulvestrant alone both in vitro and in vivo. Moreover, the phosphorylation of MAPK and Akt was involved in E2/G1-induced GPER activation. In conclusion, our results indicated that a pro-tumor function of GPER exists that mediated E2-/G1-dependent NSCLC progression and showed better efficiency regarding the co-targeting of GPER and ERβ, providing a rationale for further investigation of anti-estrogen clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Siegfried JM, Stabile LP. Estrogenic steroid hormones in lung cancer. Semin Oncol. 2014;41:5–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chlebowski RT, Schwartz AG, Wakelee H, et al. Oestrogen plus progestin and lung cancer in postmenopausal women (Women’s Health Initiative Trial): a post hoc analysis of a randomised controlled trial. Lancet. 2009;374:1243–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bouchardy C, Benhamou S, Schaffar R, et al. Lung cancer mortality risk among breast cancer patients treated with anti-estrogens. Cancer. 2011;117:1288–95.

    Article  PubMed  Google Scholar 

  5. Slatore CG, Chien JW, Au DH, Satia JA, White E. Lung cancer and hormone replacement therapy: association in the vitamins and lifestyle study. J Clin Oncol. 2010;28:1540–6.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brandenberger AW, Tee MK, Lee JY, Chao V, Jaffe RB. Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab. 1997;82:3509–12.

    CAS  PubMed  Google Scholar 

  7. Hershberger PA, Stabile LP, Kanterewicz B, et al. Estrogen receptor beta (ERbeta) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. J Steroid Biochem Mol Biol. 2009;116:102–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zhang G, Liu X, Farkas AM, et al. Estrogen receptor beta functions through nongenomic mechanisms in lung cancer cells. Mol Endocrinol. 2009;23:146–56.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Stabile LP, Lyker JS, Gubish CT, Zhang W, Grandis JR. Siegfried JM Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res. 2005;65:1459–70.

    Article  CAS  PubMed  Google Scholar 

  10. Tang H, Liao Y, Chen G, et al. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-beta. Med oncol. 2012;29:2640–8 (Northwood, London, England).

    Article  CAS  PubMed  Google Scholar 

  11. Tang H, Liao Y, Xu L, et al. Estrogen and insulin-like growth factor 1 synergistically promote the development of lung adenocarcinoma in mice. Int J Cancer. 2013;133:2473–82.

    Article  CAS  PubMed  Google Scholar 

  12. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7:715–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307:1625–30 (New York, NY).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–32.

    Article  CAS  PubMed  Google Scholar 

  15. Maggiolini M, Vivacqua A, Fasanella G, et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem. 2004;279:27008–16.

    Article  CAS  PubMed  Google Scholar 

  16. Smith HO, Arias-Pulido H, Kuo DY, et al. GPR30 predicts poor survival for ovarian cancer. Gynecol Oncol. 2009;114:465–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Smith HO, Leslie KK, Singh M, et al. GPR30: a novel indicator of poor survival for endometrial carcinoma. Am J Obstet Gynecol. 2007;196(386):e381–9 discussion 386 e389-311, 2007.

    Google Scholar 

  18. Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 2000;14:1649–60.

    Article  CAS  PubMed  Google Scholar 

  19. Albanito L, Madeo A, Lappano R, et al. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res. 2007;67:1859–66.

    Article  CAS  PubMed  Google Scholar 

  20. Vivacqua A, Bonofiglio D, Recchia AG, et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol. 2006;20:631–46.

    Article  CAS  PubMed  Google Scholar 

  21. Wehling M. Specific, nongenomic actions of steroid hormones. Annu Rev Physiol. 1997;59:365–93.

    Article  CAS  PubMed  Google Scholar 

  22. Jala VR, Radde BN, Haribabu B, Klinge CM. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer. BMC Cancer. 2012;12:624.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Garon E, Siegfried JM, Dubinett SM, et al. Results of TORI-L-03, a randomized, multicenter phase II clinical trial of erlotinib (E) or E+fulvestrant (F) in previously treated advanced non-small cell lung cancer (NSCLC). In: Proceedings of the 104th annual meeting of the american association for cancer research. Philadelphia (PA): AACR; 2013; abstract 4664, 6–10 Apr 2013 Washington DC.

  24. Girgert R, Emons G, Grundker C. Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat. 2012;134:199–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics. 1997;45:607–17.

    Article  CAS  PubMed  Google Scholar 

  26. Filardo EJ, Graeber CT, Quinn JA, et al. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin Cancer Res. 2006;12:6359–66.

    Article  CAS  PubMed  Google Scholar 

  27. Tu G, Hu D, Yang G, Yu T. The correlation between GPR30 and clinicopathologic variables in breast carcinomas. Technol Cancer Res Treat. 2009;8:231–4.

    Article  CAS  PubMed  Google Scholar 

  28. Vivacqua A, Bonofiglio D, Albanito L, et al. 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol. 2006;70:1414–23.

    Article  CAS  PubMed  Google Scholar 

  29. Sjostrom M, Hartman L, Grabau D, et al. Lack of G protein-coupled estrogen receptor (GPER) in the plasma membrane is associated with excellent long-term prognosis in breast cancer. Breast Cancer Res Treat. 2014;145:61–71.

    Article  PubMed  Google Scholar 

  30. Du GQ, Zhou L, Chen XY, Wan XP, He YY. The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells. Biochem Biophys Res Commun. 2012;420:343–9.

    Article  CAS  PubMed  Google Scholar 

  31. Blasko E, Haskell CA, Leung S, et al. Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J Neuroimmunol. 2009;214:67–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J. 2009;28:523–32.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lin BC, Suzawa M, Blind RD, et al. Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation. Cancer Res. 2009;69:5415–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Garon EB, Pietras RJ, Finn RS, et al. Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small-cell lung cancer. J Thorac Oncol. 2013;8:270–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80:231–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ensong Guo, **ao Wei, Hao Lu and Changlin Zhang from Key Laboratory of Cancer Invasion and Metastasis (Huazhong University of Science and Technology), Ministry of Education, for their kind help. This study was funded by National Natural Science Foundation of China (NSFC), Grant Number: 81272590, 81402163, and Wuhan Municipal Human Resources and Social Security Bureau, Grant Number: 2011415.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongde Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liao, Y., Fan, S. et al. G protein-coupled estrogen receptor (GPER) mediates NSCLC progression induced by 17β-estradiol (E2) and selective agonist G1. Med Oncol 32, 104 (2015). https://doi.org/10.1007/s12032-015-0558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0558-2

Keywords

Navigation