Log in

Chronic Exposure to Light Reverses the Effect of Maternal Separation on Proteins in the Prefrontal Cortex

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Animals subjected to maternal separation display behavioural and endocrine disturbances, as well as structural and functional changes in the prefrontal cortex and limbic areas. The aim of the present study was to determine the effect of maternal separation and treatment with either chronic constant light exposure or anti-depressant (escitalopram) on proteins in the prefrontal cortex. Four experimental groups of male Sprague–Dawley rats were subjected to (1) normal rearing, (2) maternal separation (3 h per day from postnatal day 2 (P2) to P14), (3) maternal separation followed by chronic light exposure (P42-P63) or (4) maternal separation followed by treatment with the anti-depressant drug, escitalopram (P68-P100). Groups 1–3 were treated with saline as vehicle control for the escitalopram-treated group. At P101, all rats were decapitated, and the prefrontal cortex was collected and stored at −80 °C. Tissue from three rats per group was pooled and proteins determined by isobaric tagging for relative and absolute quantification using matrix-assisted laser desorption/ionisation tandem mass spectrometry. Maternal separation led to disruptions in the prefrontal cortex that included hypometabolism by decreasing energy-related proteins (creatine kinase B, aconitate hydratase), decreased cell signalling (synapsin I, calmodulin, 14-3-3 protein epsilon) and impaired plasticity (spectrin, microtubule-associated protein). Maternal separation also increased dihydropyrimidinase-related protein/collapsin response mediator protein (CRMP) and myelin proteolipid protein. Exposure of maternally separated animals to constant light during adolescence reversed the hypometabolic state by increasing energy-related proteins in the prefrontal cortex and increasing cell signalling and cytoskeletal proteins and decreasing the expression of CRMP. Escitalopram had similar effects to light by increasing ATP synthase in maternally separated rats and dissimilar effects by increasing 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin proteolipid protein. Constant light exposure during adolescence reversed a range of protein changes in the prefrontal cortex of rats exposed to early maternal separation. The most prominent reversal by light treatment of maternal separation-induced protein increases in the prefrontal cortex was the expression of CRMP which impairs plasticity and neuronal signalling. The effects of light treatment overlapped partially with the effects of escitalopram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abercrombie HC, Schaefer SM, Larson CL et al (1998) Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 9:3301–3307

    Article  PubMed  CAS  Google Scholar 

  • Aisa B, Tordera R, Lasheras B, Del Rio J, Ramirez MJ (2007) Cognitive impairment associated to HPA axis hyperactivity after maternal separation. Psychoneuroendocrinology 32:256–266

    Article  PubMed  CAS  Google Scholar 

  • Alabed YZ, Pool M, Tone SO, Fournier AE (2007) Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 27:1702–1711

    Article  PubMed  CAS  Google Scholar 

  • Alabed YZ, Pool M, Tone SO, Sutherland C, Fournier AE (2010) GSK3β regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci 30:5635–5643

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Wu J, Siegel BV et al (1997) Effect of sentraline on regional metabolic rate in patients with affective disorders. Biol Psychiatry 41:15–22

    Article  PubMed  CAS  Google Scholar 

  • Carroll BJ, Curtis GC, Mendels J (1976) Neuroendocrine regulation of depression. I. Limbic system–adrenocortical dysfunction. Arch Gen Psychiatry 33:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    Article  PubMed  CAS  Google Scholar 

  • Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Develop Neuobiol 70:289–297

    Article  Google Scholar 

  • Christian KM, Miracle AD, Welllman CL, Nakazawa K (2011) Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26–36

    Article  PubMed  CAS  Google Scholar 

  • Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61:186–218

    Article  PubMed  CAS  Google Scholar 

  • Daniels WM, Pietersen CY, Carstens ME, Stein DJ (2004) Maternal separation in rats leads to anxiety-like behaviour and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis 19:3–14

    Article  PubMed  CAS  Google Scholar 

  • Dimatelis JJ, Stein DJ, Russell VA (2012a) Behavioral changes after maternal separation are reversed by chronic constant light treatment. Brain Res 1480:61–71

    Article  PubMed  CAS  Google Scholar 

  • Dimatelis JJ, Stein DJ, Russell VA, Daniels WM (2012b) Effects of maternal separation and methamphetamine exposure on protein expression in the nucleus accumbens shell and core. Met Brain Dis 27:363–375

    Article  CAS  Google Scholar 

  • Drevets WC (1999) Prefrontal cortical-amygdalar metabolism in major depression. Ann NY Acad Sci 877:614–637

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71:431–447

    Article  PubMed  CAS  Google Scholar 

  • Duman RS (2002) Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 17:306–310

    Article  PubMed  Google Scholar 

  • Dunn RT, Kimbrell TA, Ketter TA et al (2002) Principal components of the beck depression inventory and regional cerebral metabolism in unipolar and bipolar depression. Biol Psychiatry 51:387–399

    Article  PubMed  CAS  Google Scholar 

  • Edgar NM, Touma C, Palme R, Sibille E (2011) Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1. Transl Psychiatry 1:e42

    Article  PubMed  CAS  Google Scholar 

  • Even C, Schröder CM, Friedman S, Rouillon F (2008) Efficacy of light therapy in nonseasonal depression: a systematic review. J Affect Disord 108:11–23

    Article  PubMed  Google Scholar 

  • Fitzgerald PB, Laird AR, Malle J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695

    Article  PubMed  Google Scholar 

  • Fukata Y, Itoh TJ, Kimura T et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4:583–591

    PubMed  CAS  Google Scholar 

  • Golden RN, Gaynes BN, Ekstrom RD et al (2005) The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162:656–662

    Article  PubMed  Google Scholar 

  • Hermes G, Li N, Duman C, Duman R (2011) Post-weaning chronic isolation produces profound behavioural dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiol Behav 104:354–359

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354:269–279

    Article  PubMed  CAS  Google Scholar 

  • Iyilikci O, Aydin E, Canbeyli R (2009) Blue but not red light stimulation in the dark has antidepressant effect in behavioural despair. Behav Brain Res 203:65–68

    Article  PubMed  Google Scholar 

  • Kennedy SH, Evans KR, Krüger S et al (2001) Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 158:899–905

    PubMed  CAS  Google Scholar 

  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM (2000) Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122:81–103

    Article  PubMed  CAS  Google Scholar 

  • Lam RW, Levitt AJ, Levitan RD et al (2006) The Can-SAD study: a randomized controlled trial of the effectiveness of light therapy and fluoxetine in patients with winter seasonal affective disorder. Am J Psychiatry 163:805–812

    Article  PubMed  Google Scholar 

  • Leussis MP, Freund N, Brenhouse HC, Thompson BS, Anderson SL (2012) Depressive-like behavior in adolescents after maternal separation: sex differences, controllability and GABA. Dev Neurosci 34:210–217

    Article  PubMed  CAS  Google Scholar 

  • Li X, Nahas Z, Kosel FA, Anderson B, Bohning DE, George MS (2004) Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biol Psychiatry 55:882–890

    Article  PubMed  Google Scholar 

  • Lisowski P, Wieczorek M, Goscik J et al (2013) Effects of chronic stress on prefrontal cortex transcriptome in mice displaying different genetic backgrounds. J Mol Neurosci 50:33–57

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Hu J, Li H (2009) iTRAQ-based shotgun neuroproteomics in neuroproteomics. In: Ottens AK, Wang KKW (eds) Methods in Molecular Biology, vol.566. Humana, New York, NY, pp 201–216

    Google Scholar 

  • Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M (1999) Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer’s disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57:161–177

    PubMed  CAS  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Ratnasingan R, Chen B, Young LT (2003) Despiramine treatment reduces the long-term behavioural and neurochemical sequelae of early-life maternal separation. Int J Neuropsychopharm 6:391–396

    Article  CAS  Google Scholar 

  • Marais L, Stein DJ, Daniels WMU (2009a) Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis 24:587–597

    Article  PubMed  CAS  Google Scholar 

  • Marais L, Hattingh SM, Stein DJ, Daniels WMU (2009b) A proteomic analysis of the ventral hippocampus of rats subjected to maternal separation and escitalopram treatment. Metab Brain Dis 24:569–586

    Article  PubMed  CAS  Google Scholar 

  • Marais L, van Rensburg SJ, van Zyl JM, Stein DJ, Daniels WMU (2008) Maternal separation of rat pups increases the risk of develo** depressive-like behaviour after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci Res 61:106–112

    Article  PubMed  CAS  Google Scholar 

  • Mimura F, Yamagishi S, Arimura N et al (2006) Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem 281:15970–15979

    Article  PubMed  CAS  Google Scholar 

  • Mirescu C, Peters JD, Gould E (2004) Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 7:841–846

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernandez M, Tellez-Alcantara P (2000) Long photoperiod regimen may produce antidepressant actions in the male rat. Prog Neuropsychopharmacol Biol Psychiatry 24:105–116

    Article  PubMed  CAS  Google Scholar 

  • Mu J, **e P, Yang ZS et al (2007) Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci Lett 416:252–256

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  • Osuch EA, Ketter TA, Kimbrell TA et al (2000) Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biol Psychiatry 48:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Piubelli C, Carboni L, Becchi S, Mathé AA, Domenici E (2011) Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience 176:349–380

    Article  PubMed  CAS  Google Scholar 

  • Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA (2002) Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7:609–616

    Article  PubMed  CAS  Google Scholar 

  • Salerian AJ, Altar CA (2012) The prefrontal cortex influence over subcortical and limbic regions governs antidepressant response by N = H/(M + R). Psychiatry Res. doi:10.1016/j.pscychresns.2012.04.019

    PubMed  Google Scholar 

  • Seminowicz DA, Mayberg HS, McIntosh AR et al (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage 22:409–418

    Article  PubMed  CAS  Google Scholar 

  • Schultz D, Aksoy A, Canbeyli R (2008) Behavioral despair is differentially affected by the length and timing of photic stimulation in the dark phase of an L/D cycle. Prog Neuropsychopharmacol Biol Psychiatry 32:1257–1262

    Article  Google Scholar 

  • Tata DA, Anderson BJ (2010) The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: implications for hippocampal volume reductions in depression. Physiol Behav 99:186–193

    Article  PubMed  CAS  Google Scholar 

  • Terman M, Terman JS (2005) Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectrums 10:647–663

    PubMed  Google Scholar 

  • Uys JDK, Muller CJF, Marais L, Harvey BH, Stein DJ, Daniels WMU (2006) Early life trauma decreases glucocorticoid receptors in rat dentate gyrus upon adult re-stress: reversal by escitalopram. Neuroscience 137:619–625

    Article  PubMed  CAS  Google Scholar 

  • Videbech P (2000) PET measures of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 101:11–20

    Article  PubMed  CAS  Google Scholar 

  • Vivinetto AL, Suárez MM, Rivarola MA (2012) Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behav Brain Res. doi:10.1016/j.bbr.2012.11.014

    PubMed  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249

    Article  PubMed  CAS  Google Scholar 

  • Wietzdoerfer R, Fountoulakis M, Lubec G (2001) Aberrant expression of dihydropyrimidinase related proteins-2,-3, and −4 in fetal Down syndrome brain. J Neural Transm Suppl 61:95–107

    Google Scholar 

  • Wong GTH, Chang RCC, Law ACK (2012) A breach in the scaffold: the possible role of cytoskeleton dysfunction in the pathogenesis of major depression. Ageing Res Rev 12:67–75

    Article  PubMed  Google Scholar 

  • Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Aksoy A, Canbeyli R (2004) A single day of constant light (L/L) provides immunity to behavioural despair in female rats maintained on an L/D cycle. Prog Neuropsychopharmacol Biol Psychiatry 28:1261–1265

    Article  PubMed  Google Scholar 

  • Yoo SB, Kim B-T, Kim JY et al (2012) Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.08.013

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contributions of the CPGR, the Institute for the Study of Affective Neuroscience (ISAN, grant no 9276) for financial support, the National Research Foundation (NRF), Harry Crossley Foundation for financial support of the postdoctoral fellow and Cipla Medpro (Pty) Ltd for their kind donation of escitalopram oxalate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Dimatelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimatelis, J.J., Stein, D.J. & Russell, V.A. Chronic Exposure to Light Reverses the Effect of Maternal Separation on Proteins in the Prefrontal Cortex. J Mol Neurosci 51, 835–843 (2013). https://doi.org/10.1007/s12031-013-0071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0071-z

Keywords

Navigation