Log in

Src suppressed C kinase substrate regulates the lipopolysaccharide-induced TNF-α biosynthesis in rat astrocytes

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The protein kinase C (PKC) is known to be a critical component in the signaling cascades that lead to astrocyte-activation. To further understand the mechanism of PKC signaling in astrocyte-activation, we investigated the effect of SSeCKS, a PKC substrate, on LPS-induced cytokine expression in astrocytes by RT-PCR and enzymelinked immunosorbent assay. Exposure of the cells to LPS induced rapid translocation of SSeCKS to the perinuclear sides, ERK activation and pronounced TNF-α production, which can be inhibited by the PKC inhibitor Gö6983. By using siRNA knockdown of SSeCKS expression, LPS-induced signaling events were partly inhibited, including ERK activation, inducible TNF-α biosynthesis and secretion. These results suggest that SSeCKS is involved in the LPS-induced TNF-α expression in astrocytes mediated by PKC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K., & Saito, H. (2000). The p44/42 mitogen-activated protein kinase cascade is involved in the induction and maintenance of astrocyte stellation mediated by protein kinase C. Neuroscience Research, 36(3), 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Asehnoune, K., Strassheim, D., Mitra, S., Yeol Kim, J., & Abraham, E. (2005). Involvement of PKCalpha/beta in TLR4 and TLR2 dependent activation of NF-kappaB. Cellular Signalling, 17(3), 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Bajetto, A., Bonavia, R., Barbero, S., & Schettini, G. (2002). Characterization of chemokines and their receptors in the central nervous system: Physiopathological implications. Journal of Neurochemistry, 82(6), 1311–1329.

    Article  PubMed  CAS  Google Scholar 

  • Barone, F. C., Arvin, B., White, R. F., Miller, A., Webb, C. L., Willette, R. N., et al. (1997). Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke, 28, 1233–1244.

    PubMed  CAS  Google Scholar 

  • Belcheva, M. M., Clark, A. L., Haas, P. D., Serna, J. S., Hahn, J. W., Kiss, A., et al. (2005). Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. Journal of Biological Chemistry, 280(30), 27662–27669.

    Article  PubMed  CAS  Google Scholar 

  • Besson, A., & Yong, V. W. (2000). Involvement of p21 (Waf1/Cip1) in protein kinase C alpha-induced cell cycle progression. Molecular and Cellular Biology, 20, 4580–4590.

    Article  PubMed  CAS  Google Scholar 

  • Boka, G., Anglade, P., Wallach, D., Javoy-Agid, F., Agid, Y., & Hirsch, E. C. (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neuroscience Letters, 172, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Brahmachari, S., Fung, Y. K., & Pahan, K. (2006). Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. Journal of Neuroscience, 26(18), 4930–4939.

    Article  PubMed  CAS  Google Scholar 

  • Breitner, J. C. (1996). The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annual Review of Medicine, 47, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Chapline, C., Cottom, J., Tobin, H., Hulmes, J., Crabb, J., & Jaken, S. (1998). A major, transformation-sensitive PKC-binding protein is also a PKC substrate involved in cytoskeletal remodeling. Journal of Biological Chemistry, 273, 19482–19489.

    Article  PubMed  CAS  Google Scholar 

  • Chapline, C., Mousseau, B., Ramsay, K., Duddy, S., Li, Y., Kiley, S. C., et al. (1996). Identification of a major protein kinase C-binding protein and substrate in rat embryo fibroblasts. Decreased expression in transformed cells. Journal of Biological Chemistry, 271, 6417–6422.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B. C., & Lin, W. W. (2001). PKC- and ERK-dependent activation of I kappa B kinase by lipopolysaccharide in macrophages: Enhancement by P2Y receptor-mediated CaMK activation. British Journal of Pharmacology, 134(5), 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  • Eun, S. Y., Kim, E. H., Kang, K. S., Kim, H. J., Jo, S. A., Kim, S. J., et al. (2006). Cell type-specific upregulation of myristoylated alanine-rich C kinase substrate and protein kinase C-alpha, -beta I, -beta II, and -delta in microglia following kainic acid-induced seizures. Experimental and Molecular Medicine, 38(3), 310–319.

    PubMed  CAS  Google Scholar 

  • Gelman, I. H., Lee, K., Tombler, E., Gordon, R., & Lin, X. (1998). Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS. Cell Motility and the Cytoskeleton, 41, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Ginnan, R., Guikema, B. J., Singer, H. A., & Jourd’heuil, D. (2006). PKC-delta mediates activation of ERK1/2 and induction of iNOS by IL-1beta in vascular smooth muscle cells. American Journal of Physiology. Cell Physiology, 290(6), C1583-C1591.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, W. S., & Mrak, R. E. (2002). Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. Journal of Leukocyte Biology, 72, 233–238.

    PubMed  CAS  Google Scholar 

  • Han, I. O., Kim, H. S., Kim, H. C., Joe, E. H., & Kim, W. K. (2003). Synergistic expression of inducible nitric oxide synthase by phorbol ester and interferon-gamma is mediated through NF-kappaB and ERK in microglial cells. Journal of Neuroscience Research, 73(5), 659–669.

    Article  PubMed  CAS  Google Scholar 

  • Hatziieremia, S., Gray, A. I., Ferro, V. A., Paul, A., & Plevin, R. (2006). The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFkappaB signalling pathways in monocytes/macrophages. British Journal of Pharmacology, 149(2), 188–198.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S, Peterson, P. K., & Chao, C. C. (1997). Cytokine-mediated neuronal apoptosis. Neurochemistry International, 30, 427–431.

    Article  PubMed  CAS  Google Scholar 

  • Jove, M., Planavila, A., Sanchez, R. M., Merlos, M., Laguna, J. C., & Vazquez-Carrera, M. (2006). Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation. Endocrinology, 147(1), 552–561.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, H., Okita, K., Fujikura, D., Mori, K., Iwanaga, T., & Saito, M. (2002). Induction of Src-suppressed C kinase substrate (SSeCKS) in vascular endothelial cells by bacterial lipopolysaccharide. Journal of Histochemistry and Cytochemistry, 50, 245–255.

    PubMed  CAS  Google Scholar 

  • Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., et al. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nature Medicine, 9, 900–906.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., & Gelman, I. H. (2002). Calmodulin and cyclin D anchoring sites on the Src-suppressed C kinase substrate, SSeCKS. Biochemical and Biophysical Research Communications, 290(5), 1368–1375.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Nelson, P., & Gelman, I. H. (2000). Regulation of G->S Progression by the SSeCKS Tumor Suppressor: Control of cyclin D expression and cellular compartmentalization. Molecular and Cellular Biology, 20, 7259–7272.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Tombler, E., Nelson, P. J., Ross, M., & Gelman, I. H. (1996). A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. Journal of Biological Chemistry, 271, 28430–28438.

    Article  PubMed  CAS  Google Scholar 

  • Maeng, Y. S., Min, J. K., Kim, J. H., Yamagishi, A., Mochizuki, N., Kwon, J. Y., et al. (2006). ERK is an anti-inflammatory signal that suppresses expression of NF-kappaB-dependent inflammatory genes by inhibiting IKK activity in endothelial cells. Cellular Signalling, 18(7), 994–1005.

    Article  PubMed  CAS  Google Scholar 

  • Mayne, M., Ni, W., Yan, H. J., Xue, M., Johnston, J. B., Del Bigio, M. R., et al. (2001). Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke, 32, 240–248.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (1995). The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Research: Brain Research Reviews, 21, 195–218.

    Article  PubMed  CAS  Google Scholar 

  • Menet, V., Gimenez y Ribotta, M., Chauvet, N., Drian, M.J., Lannoy, J., Colucci-Guyon, E., et al. (2001). Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. Journal of Neuroscience, 21, 6147–6158.

    PubMed  CAS  Google Scholar 

  • Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M., & Eisdorfer, C. (2002). The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. Journal of the Neurological Sciences, 202(1–2), 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K., & Nagatsu, T. (1994). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neuroscience Letters, 165, 208–210.

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado, E., Ortiz, S., Molina-Holgado, F., & Guaza, C. (2000). Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. British Journal of Pharmacology, 131(1), 152–159.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, C. A., Hoek, R. M., Wiekowski, M. T., Lira, S. A., & Sedgwick, J. D. (2002). Interactions between hemopoietically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. Journal of Immunology, 169(12), 7054–7062.

    CAS  Google Scholar 

  • Nagatsu, T., Mogi, M., Ichinose, H., & Togari, A. (2000). Changes in cytokines and neurotrophins in Parkinson’s disease. Journal of Neural Transmission, Supplementum, 60, 277–290.

    Google Scholar 

  • Nakai, M., Tanimukai, S., Yagi, K., Saito, N., Taniguchi, T., Terashima, A., et al. (2001). Amyloid beta protein activates PKC-delta and induces translocation of myristoylated alanine-rich C kinase substrate (MARCKS) in microglia. Neurochemistry International, 38, 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Nauert, J., Klauck, T., Langeberg, L. K., & Scott, J. D. (1997). Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffolding protein. Current Biology, 7, 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro, H., Martin, D., & Hallenbeck, J. M. (1997). Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. Journal of Cerebral Blood Flow and Metabolism, 17, 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, P. J., Moissoglu, K., Vargas J., Jr., Klotman, P. E., & Gelman, I. H. (1999). Involvement of the protein kinase C substrate, SSeCKS, in the actin-based stellate morphology of mesangial cells. Journal of Cell Science, 112, 361–370.

    PubMed  CAS  Google Scholar 

  • Rosé, S. D., Byers, D. M., Morash, S. C., Fedoroff, S., & Cook, H. W. (1996). Lipopolysaccharide stimulates differential expression of myristoylated protein kinase C substrates in murine microglia. Journal of Neuroscience Research, 44, 235–242.

    Article  PubMed  Google Scholar 

  • Rui, L., Healy, J. I., Blasioli, J., & Goodnow, C. C. (2006). ERK signaling is a molecular switch integrating opposing inputs from B cell receptor and T cell cytokines to control TLR4-driven plasma cell differentiation. Journal of Immunology, 177(8), 5337–5346.

    CAS  Google Scholar 

  • Seykora, J. T., Ravetch, J. V., & Aderem, A. (1991). Cloning and molecular characterization of the murine macrophage “68-kDa” protein kinase C substrate and its regulation by bacterial lipopolysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 88, 2505–2509.

    Article  PubMed  CAS  Google Scholar 

  • Shih, M., Lin, F., Scott, J. D., Wang, H. Y., & Malbon, C. C. (1999). Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of Gravin. Journal of Biological Chemistry, 274, 1588–1595.

    Article  PubMed  CAS  Google Scholar 

  • Thavasu, P., Propper, D., McDonald, A., Dobbs, N., Ganesan, T., Talbot, D., et al. (1999). The protein kinase C inhibitor CGP41251 suppresses cytokine release and extracellular signal-regulated kinase 2 expression in cancer patients. Cancer Research, 59(16), 3980–3984.

    PubMed  CAS  Google Scholar 

  • Tokita, Y., Keino, H., Matsui, F., Aono, S., Ishiguro, H., Higashiyama, S., et al. (2001). Regulation of neuregulin expression in the injured rat brain and cultured astrocytes. Journal of Neuroscience, 21, 1257–1264.

    PubMed  CAS  Google Scholar 

  • Vitale, M., Gobbi, G., Mirandola, P., Ponti, C., Sponzilli, I., Rinaldi, L., et al. (2006). TNF-related apoptosis-inducing ligand (TRAIL) and erythropoiesis: a role for PKC epsilon. European Journal of Histochemistry, 50, 15–18.

    PubMed  CAS  Google Scholar 

  • Zhao, X., Bausano, B., Pike, B. R., Newcomb-Fernandez, J. K., Wang, K. K., Shohami, E., et al. (2001). TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septohippocampal cultures. Journal of Neuroscience Research, 64, 121–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -g. Shen.

Additional information

Lin-lin Sun and Chun Cheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L.l., Cheng, C., Liu, H.o. et al. Src suppressed C kinase substrate regulates the lipopolysaccharide-induced TNF-α biosynthesis in rat astrocytes. J Mol Neurosci 32, 16–24 (2007). https://doi.org/10.1007/s12031-007-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0003-x

Keywords

Navigation