Log in

Morphologic Variants of Pancreatic Neuroendocrine Tumors: Clinicopathologic Analysis and Prognostic Stratification

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Better prognostication/stratification of pancreatic neuroendocrine tumors (PanNETs) is needed. In this detailed morpheomic study of 163 resected PanNETs, 11 unusual variants, some of which were not previously recognized, and others scarcely documented in the literature, were identified, and their pathologic characteristics were further analyzed. By behavior and clinicopathologic associations, these variants could be grouped into three prognostically different categories. I. More aggressive (20%). Included in this group were the variants that in average showed higher grade and stage and adverse outcome including oncocytic, plasmacytoid, lipid-rich and previously unrecognized hepatoid variants, which often had a more diffuse/broad-band growth pattern, with some also displaying discohesiveness. They were characterized by abundant cytoplasm and often had prominent nucleoli (as seen in metabolically active cells), thus the provisional name “metabolic cell phenotype.” Because of their diversion from classical neuroendocrine cytomorphology, these variants created challenges on original diagnostic workup, particularly hepatoid examples, which revealed Arginase 1/Hep Par-1 expression in 50%. II. Less aggressive (10%). These cases either showed signs of maturation, including nested growth, paraganglioid pattern (which was previously unrecognized), and organoid PanNETs such as “ductulo-insular” growth, or showed symplastic/degenerative changes, and despite their paradoxically disconcerting histology, were more benevolent in behavior. III. Undetermined. There were other variants including mammary tubulolobular-like, pseudoglandular, peliotic, and sclerotic PanNETs, which although diagnostically challenging, their biologic significance could not be determined because of rarity or heterogeneous characteristics. Prognostic associations: Features that were significantly different in the more aggressive group than the less aggressive group were median size (5.0 vs 1.6 cm, p < 0.001), percentage of pT3+T4 cases (72% vs 12%, p < 0.001), Ki67 index (5.3% vs 2.3%, p = 0.001), % G2 and G3 cases (77% vs 27%, p < 0.001), and rate of lymph node and distant metastasis (96% vs 27%, p < 0.001). In stepwise logistic regression model using the 3 established prognosticators of T stage, size, and grade along with morphology, only aggressive-morphology (metabolic cell phenotype) was found to be associated with metastatic behavior with an odds ratio of 5.9 with 95% confidence interval (C.I.) 1.688 to 22.945 and p value 0.007. In conclusion, PanNETs display various morphologic patterns that are not only challenging and important diagnostically but appear to have biologic significance. Tumors with more diffuse growth of cells with nucleoli and abundant cytoplasm and/or discohesion (oncocytic, hepatoid, lipid-rich, plasmacytoid PanNETs), provisionally termed “metabolic cell phenotype,” show aggressive characteristics and are an independent determinant of adverse outcome and thus may require closer post-surgical follow-up, whereas variants with more degenerative or mature features (ductuloinsular, pleomorphic, paraganglioma-like) appear to be more benevolent despite their more atypical and worrisome morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149(6):1501-10.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reid MD, Bagci P, Adsay NV. Histopathologic assessment of pancreatic cancer: does one size fit all? J Surg Oncol. 2013;107(1):67-77.

    PubMed  Google Scholar 

  3. Overman MJ, Zhang J, Kopetz S, Davies M, Jiang ZQ, Stemke-Hale K, et al. Gene expression profiling of ampullary carcinomas classifies ampullary carcinomas into biliary-like and intestinal-like subtypes that are prognostic of outcome. PLoS One. 2013;8(6):e65144.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayub SB, Dodge J. Lipid-rich variant of pancreatic endocrine neoplasms: a case report. Acta Cytol. 2010;54(5 Suppl):829-34.

    PubMed  Google Scholar 

  5. Ordonez NG, Silva EG. Islet cell tumour with vacuolated lipid-rich cytoplasm: a new histological variant of islet cell tumour. Histopathology. 1997;31(2):157-60.

    CAS  PubMed  Google Scholar 

  6. Rao AC, Monappa V, Shetty P. Lipid-rich variant of pancreatic endocrine tumour with inhibin positivity and microscopic foci of microcystic adenoma-like areas: emphasis on histopathology. Singapore Med J. 2013;54(2):e31-4.

    PubMed  Google Scholar 

  7. Shattuck TM, Waugh MS. Lipid-rich variant of a pancreatic endocrine neoplasm in an endoscopic ultrasound-guided fine needle aspiration biopsy. Diagn Cytopathol. 2013;41(8):703-4.

    PubMed  Google Scholar 

  8. Singh R, Basturk O, Klimstra DS, Zamboni G, Chetty R, Hussain S, et al. Lipid-rich variant of pancreatic endocrine neoplasms. Am J Surg Pathol. 2006;30(2):194-200.

    PubMed  Google Scholar 

  9. Carstens PH, Cressman FK, Jr. Malignant oncocytic carcinoid of the pancreas. Ultrastruct Pathol. 1989;13(1):69-75.

    CAS  PubMed  Google Scholar 

  10. Chen S, Wang X, Lin J. Fine needle aspiration of oncocytic variants of pancreatic neuroendocrine tumor: a report of three misdiagnosed cases. Acta Cytol. 2014;58(2):131-7.

    PubMed  Google Scholar 

  11. Di Carlo S, al. e. Oncocytic Neuroendocrine Tumour of the Pancreas and Duodenum: Two Case Reports with Review of the Literature. Journal of Pancreas; 2015.

  12. Volante M, La Rosa S, Castellano I, Finzi G, Capella C, Bussolati G. Clinico-pathological features of a series of 11 oncocytic endocrine tumours of the pancreas. Virchows Arch. 2006;448(5):545-51.

    PubMed  Google Scholar 

  13. Zee SY, Hochwald SN, Conlon KC, Brennan MF, Klimstra DS. Pleomorphic pancreatic endocrine neoplasms: a variant commonly confused with adenocarcinoma. Am J Surg Pathol. 2005;29(9):1194-200.

    PubMed  Google Scholar 

  14. Chetty R, Kennedy M, Ezzat S, Asa SL. Pancreatic endocrine pathology in von Hippel-Lindau disease: an expanding spectrum of lesions. Endocr Pathol. 2004;15(2):141-8.

    PubMed  Google Scholar 

  15. Perez-Montiel MD, Frankel WL, Suster S. Neuroendocrine carcinomas of the pancreas with ‘Rhabdoid’ features. Am J Surg Pathol. 2003;27(5):642-9.

    PubMed  Google Scholar 

  16. Shia J, Erlandson RA, Klimstra DS. Whorls of intermediate filaments with entrapped neurosecretory granules correspond to the “rhabdoid” inclusions seen in pancreatic endocrine neoplasms. Am J Surg Pathol. 2004;28(2):271-3.

    PubMed  Google Scholar 

  17. Kiyonaga M, Matsumoto S, Mori H, Yamada Y, Takaji R, Hijiya N, et al. Pancreatic neuroendocrine tumor with extensive intraductal invasion of the main pancreatic duct: a case report. JOP. 2014;15(5):497-500.

    PubMed  Google Scholar 

  18. Stokes MB, Kumar A, Symmans WF, Scholes JV, Melamed J. Pancreatic endocrine tumor with signet ring cell features: a case report with novel ultrastructural observations. Ultrastruct Pathol. 1998;22(2):147-52.

    CAS  PubMed  Google Scholar 

  19. Fite JJ, Ali SZ, VandenBussche CJ. Fine-needle aspiration of a pancreatic neuroendocrine tumor with prominent rhabdoid features. Diagn Cytopathol. 2018;46(7):600-3.

    PubMed  Google Scholar 

  20. Chetty R, El-Shinnawy I. Intraductal pancreatic neuroendocrine tumor. Endocr Pathol. 2009;20(4):262-6.

    CAS  PubMed  Google Scholar 

  21. Canberk S, LiVolsi VA, Baloch Z. Oncocytic lesions of the neuroendocrine system. Adv Anat Pathol. 2014;21(2):69-82.

    PubMed  Google Scholar 

  22. Chen S, Lin J, Wang X, Wu HH, Cramer H. EUS-guided FNA cytology of pancreatic neuroendocrine tumour (PanNET): a retrospective study of 132 cases over an 18-year period in a single institution. Cytopathology. 2014;25(6):396-403.

    CAS  PubMed  Google Scholar 

  23. Nguyen-Ho P, Nguyen GK, Jewell LD. Oncocytic neuroendocrine carcinoma of the pancreas. Report of a case with needle aspiration cytology, immunocytochemistry and electron microscopy. Acta Cytol. 1994;38(4):611-3.

    CAS  PubMed  Google Scholar 

  24. Miyazaki T, Aishima S, Fu**o M, Ozono K, Kubo Y, Ushijima Y, et al. Neuroendocrine tumor of the pancreas with rhabdoid feature. Virchows Arch. 2018;473(2):247-52.

    PubMed  PubMed Central  Google Scholar 

  25. Hussain S AA, Chetty R, Klimstra DS. . Oncocytic pancreatic endocrine neoplasms: A clinicopathologic and immunohistochemical analysis of 21 cases. Mod Pathol 2005; 18: 279A. . Mod Pathol 2005. 2005; 18: 279A. .

  26. Hoang MP, Hruban RH, Albores-Saavedra J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel-Lindau disease. Am J Surg Pathol. 2001;25(5):602-9.

    CAS  PubMed  Google Scholar 

  27. van Eeden S, de Leng WW, Offerhaus GJ, Morsink FH, Weterman MA, de Krijger RR, et al. Ductuloinsular tumors of the pancreas: endocrine tumors with entrapped nonneoplastic ductules. Am J Surg Pathol. 2004;28(6):813-20.

    PubMed  Google Scholar 

  28. Reid MD, Bagci P, Ohike N, Saka B, Erbarut Seven I, Dursun N, et al. Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparative analysis of four counting methodologies. Mod Pathol. 2015;28(5):686-94.

    PubMed  Google Scholar 

  29. Ip PP, Tse KY, Tam KF. Uterine smooth muscle tumors other than the ordinary leiomyomas and leiomyosarcomas: a review of selected variants with emphasis on recent advances and unusual morphology that may cause concern for malignancy. Adv Anat Pathol. 2010;17(2):91-112.

    PubMed  Google Scholar 

  30. Shanmugasundaram G, Thangavel P, Venkataraman B, Barathi G. Incidental ancient schwannoma of the posterior mediastinum in a young male: a rare scenario. BMJ Case Rep. 2019;12(5).

  31. Kamarashev J, French LE, Dummer R, Kerl K. Symplastic glomus tumor - a rare but distinct benign histological variant with analogy to other ‘ancient’ benign skin neoplasms. J Cutan Pathol. 2009;36(10):1099-102.

    PubMed  Google Scholar 

  32. Wheeler DT, Tai LH, Bratthauer GL, Waldner DL, Tavassoli FA. Tubulolobular carcinoma of the breast: an analysis of 27 cases of a tumor with a hybrid morphology and immunoprofile. Am J Surg Pathol. 2004;28(12):1587-93.

    PubMed  Google Scholar 

  33. La Rosa S, Bongiovanni M. Pancreatic Solid Pseudopapillary Neoplasm: Key Pathologic and Genetic Features. Arch Pathol Lab Med. 2020.

  34. Al-Khafaji B, Noffsinger AE, Miller MA, DeVoe G, Stemmermann GN, Fenoglio-Preiser C. Immunohistologic analysis of gastrointestinal and pulmonary carcinoid tumors. Hum Pathol. 1998;29(9):992-9.

  35. Tsuta K, Raso MG, Kalhor N, Liu DC, Wistuba, II, Moran CA. Sox10-positive sustentacular cells in neuroendocrine carcinoma of the lung. Histopathology. 2011;58(2):276-85.

    PubMed  Google Scholar 

  36. Wood S CT, Stashek K, Bellizzi A. . Re-evaluation of the Significance of Sustentacular Cells in Neuroendocrine Tumors With the New Age Marker SOX10. Am J Clin Pathol. 2014;142.

  37. Chetty R, Asa SL, Adsay NV. Pancreatic endocrine tumors with ductules. Am J Surg Pathol. 2005;29(1):136-7; author reply 7-8.

    PubMed  Google Scholar 

  38. Deshpande V, Selig MK, Nielsen GP, Fernandez-del Castillo C, Lauwers GY. Ductulo-insular pancreatic endocrine neoplasms: clinicopathologic analysis of a unique subtype of pancreatic endocrine neoplasms. Am J Surg Pathol. 2003;27(4):461-8.

    PubMed  Google Scholar 

  39. DeLellis RA, Tischler AS, Wolfe HJ. Multidirectional differentiation in neuroendocrine neoplasms. J Histochem Cytochem. 1984;32(8):899-904.

    CAS  PubMed  Google Scholar 

  40. Sigel CS, Krauss Silva VW, Reid MD, Chhieng D, Basturk O, Sigel KM, et al. Well differentiated grade 3 pancreatic neuroendocrine tumors compared with related neoplasms: A morphologic study. Cancer Cytopathol. 2018;126(5):326-35.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reid MD, Balci S, Saka B, Adsay NV. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol. 2014;25(1):65-79.

    CAS  PubMed  Google Scholar 

  42. Zhang L, Smyrk TC, Oliveira AM, Lohse CM, Zhang S, Johnson MR, et al. KIT is an independent prognostic marker for pancreatic endocrine tumors: a finding derived from analysis of islet cell differentiation markers. Am J Surg Pathol. 2009;33(10):1562-9.

    PubMed  Google Scholar 

  43. La Rosa S, Rigoli E, Uccella S, Novario R, Capella C. Prognostic and biological significance of cytokeratin 19 in pancreatic endocrine tumours. Histopathology. 2007;50(5):597-606.

    PubMed  Google Scholar 

  44. Son EM, Kim JY, An S, Song KB, Kim SC, Yu E, et al. Clinical and Prognostic Significances of Cytokeratin 19 and KIT Expression in Surgically Resectable Pancreatic Neuroendocrine Tumors. J Pathol Transl Med. 2015;49(1):30-6.

    PubMed  PubMed Central  Google Scholar 

  45. Cen D, Chen J, Li Z, Zhao J, Cai X. Prognostic significance of cytokeratin 19 expression in pancreatic neuroendocrine tumor: A meta-analysis. PLoS One. 2017;12(11):e0187588.

    PubMed  PubMed Central  Google Scholar 

  46. Han X, Zhao J, Ji Y, Xu X, Lou W. Expression of CK19 and KIT in resectable pancreatic neuroendocrine tumors. Tumour Biol. 2013;34(5):2881-9.

    CAS  PubMed  Google Scholar 

  47. Ali A, Serra S, Asa SL, Chetty R. The predictive value of CK19 and CD99 in pancreatic endocrine tumors. Am J Surg Pathol. 2006;30(12):1588-94.

    PubMed  Google Scholar 

  48. Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14(4):473-80.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;169(2):361-71.

    CAS  PubMed  Google Scholar 

  50. Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism and energy sensing in tumor progression. Biochim Biophys Acta Bioenerg. 2017;1858(8):582-90.

    CAS  PubMed  Google Scholar 

  51. Scarpa A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. Ann Endocrinol (Paris). 2019;80(3):153-8.

    PubMed  Google Scholar 

  52. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65-71.

    CAS  PubMed  Google Scholar 

  53. Chan J, Kulke M. Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr Treat Options Oncol. 2014;15(3):365-79.

    PubMed  PubMed Central  Google Scholar 

  54. Chan CS, Laddha SV, Lewis PW, Koletsky MS, Robzyk K, Da Silva E, et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat Commun. 2018;9(1):4158.

    PubMed  PubMed Central  Google Scholar 

  55. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol. 2012;25(7):1033-9.

    PubMed  PubMed Central  Google Scholar 

  56. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199-203.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chou A, Itchins M, de Reuver PR, Arena J, Clarkson A, Sheen A, et al. ATRX loss is an independent predictor of poor survival in pancreatic neuroendocrine tumors. Hum Pathol. 2018;82:249-57.

    CAS  PubMed  Google Scholar 

  59. Pea A, Yu J, Marchionni L, Noe M, Luchini C, Pulvirenti A, et al. Genetic Analysis of Small Well-differentiated Pancreatic Neuroendocrine Tumors Identifies Subgroups With Differing Risks of Liver Metastases. Ann Surg. 2020;271(3):566-73.

    PubMed  Google Scholar 

  60. Adachi E, Maeda T, Kajiyama K, Kinukawa N, Matsumata T, Sugimachi K, et al. Factors correlated with portal venous invasion by hepatocellular carcinoma: univariate and multivariate analyses of 232 resected cases without preoperative treatments. Cancer. 1996;77(10):2022-31.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkan Adsay.

Ethics declarations

Proper institutional review board approvals were obtained for this retrospective analysis of surgical pathology materials.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Reid, M.D., Pehlivanoglu, B. et al. Morphologic Variants of Pancreatic Neuroendocrine Tumors: Clinicopathologic Analysis and Prognostic Stratification. Endocr Pathol 31, 239–253 (2020). https://doi.org/10.1007/s12022-020-09628-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09628-z

Keywords

Navigation