Log in

GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials

  • Meta-Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been suggested to be associated with an increased risk of pancreatitis and pancreatic cancer. The aim of this meta-analysis was to collect data from large-scale cardiovascular outcome trials (CVOTs) to assess the effect of GLP-1RAs on the incidence of acute pancreatitis and pancreatic cancer.

Methods

Database of Medline, Embase, and the Cochrane Central Register of Controlled Trials were extensively searched up to October 10, 2019. Randomized controlled trials were eligible if they compared GLP-RA with placebo as add-on therapy to standard care in T2DM patients, and reported outcomes required for cardiovascular safety studies and events of acute pancreatitis and/or pancreatic cancer. Peto odds ratio (OR) with 95% confidence interval (CI) was calculated for acute pancreatitis and pancreatic cancer.

Results

Seven CVOTs enrolling 56,004 patients with T2DM were identified, with a median follow-up time ranging from 1.3 to 5.4 years. A total of 180 cases of acute pancreatitis and 108 cases of pancreatic cancer were reported. The risk of either acute pancreatitis or pancreatic cancer with GLP-1-RA treatment was not significantly different from that observed in placebo arm (Peto OR [95% CI] 1.05 [0.78–1.40], P = 0.76, and 1.12 [0.77–1.63], P = 0.56, respectively), and the results remained robust to sensitivity analyses.

Conclusion

Pooled analysis of CVOTs did not suggest any increased risk of either acute pancreatitis or pancreatic cancer with GLP-1RA treatment in T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF diabetes atlas, 9th edn. (2019). http://www.diabetesatlas.org/across-the-globe.html. Accessed 25 Nov 2019

  2. R. Pannala, J.B. Leirness, W.R. Bamlet, A. Basu, G.M. Petersen, S.T. Chari, Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 134(4), 981–987 (2008). https://doi.org/10.1053/j.gastro.2008.01.039

    Article  CAS  PubMed  Google Scholar 

  3. F. Bragg, M.V. Holmes, A. Iona, Y. Guo, H. Du, Y. Chen, Z. Bian, L. Yang, W. Herrington, D. Bennett, I. Turnbull, Y. Liu, S. Feng, J. Chen, R. Clarke, R. Collins, R. Peto, L. Li, G. Z. Chen, China Kadoorie Biobank collaborative: association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA 317(3), 280–289 (2017). https://doi.org/10.1001/jama.2016.19720

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Gonzalez-Perez, R.G. Schlienger, L.A. Rodriguez, Acute pancreatitis in association with type 2 diabetes and antidiabetic drugs: a population-based cohort study. Diabetes Care 33(12), 2580–2585 (2010). https://doi.org/10.2337/dc10-0842

    Article  PubMed  PubMed Central  Google Scholar 

  5. C.J. Girman, T.D. Kou, B. Cai, C.M. Alexander, E.A. O’Neill, D.E. Williams-Herman, L. Katz:, Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes. Metab. 12(9), 766–771 (2010). https://doi.org/10.1111/j.1463-1326.2010.01231.x

    Article  CAS  PubMed  Google Scholar 

  6. R.A. Noel, D.K. Braun, R.E. Patterson, G.L. Bloomgren, Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care 32(5), 834–838 (2009). https://doi.org/10.2337/dc08-1755

    Article  PubMed  PubMed Central  Google Scholar 

  7. S.P. Marso, S.C. Bain, A. Consoli, F.G. Eliaschewitz, E. Jodar, L.A. Leiter, I. Lingvay, J. Rosenstock, J. Seufert, M.L. Warren, V. Woo, O. Hansen, A.G. Holst, J. Pettersson, T. Vilsboll; S.-. Investigators, Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375(19), 1834–1844 (2016). https://doi.org/10.1056/NEJMoa1607141

    Article  CAS  PubMed  Google Scholar 

  8. S.P. Marso, G.H. Daniels, K. Brown-Frandsen, P. Kristensen, J.F. Mann, M.A. Nauck, S.E. Nissen, S. Pocock, N.R. Poulter, L.S. Ravn, W.M. Steinberg, M. Stockner, B. Zinman, R.M. Bergenstal, J.B. Buse; L.S. Committee, L.T. Investigators, Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375(4), 311–322 (2016). https://doi.org/10.1056/NEJMoa1603827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A.F. Hernandez, J.B. Green, S. Janmohamed, R.B. D’Agostino, Sr,C.B. Granger, N.P. Jones, L.A. Leiter, A.E. Rosenberg, K.N. Sigmon, M.C. Somerville, K.M. Thorpe, J.J.V. McMurray, S.Del Prato; c. Harmony Outcomes, investigators, Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157), 1519–1529 (2018). https://doi.org/10.1016/S0140-6736(18)32261-X

    Article  CAS  PubMed  Google Scholar 

  10. M.A. Pfeffer, B. Claggett, R. Diaz, K. Dickstein, H.C. Gerstein, L.V. Kober, F.C. Lawson, L. **, X. Wei, E.F. Lewis, A.P. Maggioni, J.J. McMurray, J.L. Probstfield, M.C. Riddle, S.D. Solomon, J.C. Tardif; E. Investigators, Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373(23), 2247–2257 (2015). https://doi.org/10.1056/NEJMoa1509225

    Article  CAS  PubMed  Google Scholar 

  11. R.R. Holman, M.A. Bethel, R.J. Mentz, V.P. Thompson, Y. Lokhnygina, J.B. Buse, J.C. Chan, J. Choi, S.M. Gustavson, N. Iqbal, A.P. Maggioni, S.P. Marso, P. Ohman, N.J. Pagidipati, N. Poulter, A. Ramachandran, B. Zinman, A.F. Hernandez; E.S. Group, Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377(13), 1228–1239 (2017). https://doi.org/10.1056/NEJMoa1612917

    Article  CAS  PubMed  Google Scholar 

  12. M. Husain, A.L. Birkenfeld, M. Donsmark, K. Dungan, F.G. Eliaschewitz, D.R. Franco, O.K. Jeppesen, I. Lingvay, O. Mosenzon, S.D. Pedersen, C.J. Tack, M. Thomsen, T. Vilsboll, M.L. Warren, S.C. Bain; P. Investigators, Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381(9), 841–851 (2019). https://doi.org/10.1056/NEJMoa1901118

    Article  CAS  PubMed  Google Scholar 

  13. H.C. Gerstein, H.M. Colhoun, G.R. Dagenais, R. Diaz, M. Lakshmanan, P. Pais, J. Probstfield, J.S. Riesmeyer, M.C. Riddle, L. Ryden, D. Xavier, C.M. Atisso, L. Dyal, S. Hall, P. Rao-Melacini, G. Wong, A. Avezum, J. Basile, N. Chung, I. Conget, W.C. Cushman, E. Franek, N. Hancu, M. Hanefeld, S. Holt, P. Jansky, M. Keltai, F. Lanas, L.A. Leiter, P. Lopez-Jaramillo, E.G.Cardona Munoz, V. Pirags, N. Pogosova, P.J. Raubenheimer, J.E. Shaw, W.H. Sheu, T. Temelkova-Kurktschiev; R. Investigators, Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394(10193), 121–130 (2019). https://doi.org/10.1016/S0140-6736(19)31149-3

    Article  CAS  PubMed  Google Scholar 

  14. M. Elashoff, A.V. Matveyenko, B. Gier, R. Elashoff, P.C. Butler, Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141(1), 150–156 (2011). https://doi.org/10.1053/j.gastro.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  15. A.E. Butler, M. Campbell-Thompson, T. Gurlo, D.W. Dawson, M. Atkinson, P.C. Butler, Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62(7), 2595–2604 (2013). https://doi.org/10.2337/db12-1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Singh, H.Y. Chang, T.M. Richards, J.P. Weiner, J.M. Clark, J.B. Segal, Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern. Med. 173(7), 534–539 (2013). https://doi.org/10.1001/jamainternmed.2013.2720

    Article  CAS  PubMed  Google Scholar 

  17. B. Gier, A.V. Matveyenko, D. Kirakossian, D. Dawson, S.M. Dry, P.C. Butler, Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model. Diabetes 61(5), 1250–1262 (2012). https://doi.org/10.2337/db11-1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L.M. Knapen, J. van Dalem, Y.C. Keulemans, N.P. van Erp, M.T. Bazelier, M.L. De Bruin, H.G. Leufkens, S. Croes, C. Neef, F. de Vries, J.H. Driessen, Use of incretin agents and risk of pancreatic cancer: a population-based cohort study. Diabetes Obes. Metab. 18(3), 258–265 (2016). https://doi.org/10.1111/dom.12605

    Article  CAS  PubMed  Google Scholar 

  19. J.A. Romley, D.P. Goldman, M. Solomon, D. McFadden, A.L. Peters, Exenatide therapy and the risk of pancreatitis and pancreatic cancer in a privately insured population. Diabetes Technol. Ther. 14(10), 904–911 (2012). https://doi.org/10.1089/dia.2012.0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Azoulay, K.B. Filion, R.W. Platt, M. Dahl, C.R. Dormuth, K.K. Clemens, M. Durand, D.N. Juurlink, L.E. Targownik, T.C. Turin, J.M. Paterson, P. Ernst; I. Canadian Network for Observational Drug Effect Studies, Incretin based drugs and the risk of pancreatic cancer: international multicentre cohort study. BMJ 352, i581 (2016). https://doi.org/10.1136/bmj.i581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Raschi, C. Piccinni, E. Poluzzi, G. Marchesini, F. De Ponti, The association of pancreatitis with antidiabetic drug use: gaining insight through the FDA pharmacovigilance database. Acta Diabetol. 50(4), 569–577 (2013). https://doi.org/10.1007/s00592-011-0340-7

    Article  CAS  PubMed  Google Scholar 

  22. I. Tkac, I. Raz, Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 40(2), 284–286 (2017). https://doi.org/10.2337/dc15-1707

    Article  CAS  PubMed  Google Scholar 

  23. M. Monami, B. Nreu, A. Scatena, B. Cresci, F. Andreozzi, G. Sesti, E. Mannucci, Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): data from randomized controlled trials. Diabetes Obes. Metab. 19(9), 1233–1241 (2017). https://doi.org/10.1111/dom.12926

    Article  CAS  PubMed  Google Scholar 

  24. Y. Liu, Q. Tian, J. Yang, H. Wang, T. Hong, No pancreatic safety concern following glucagon-like peptide-1 receptor agonist therapies: a pooled analysis of cardiovascular outcome trials. Diabetes Metab. Res. Rev. 34(8), e3061 (2018). https://doi.org/10.1002/dmrr.3061

    Article  CAS  PubMed  Google Scholar 

  25. D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman; P. Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8(5), 336–341 (2010). https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  PubMed  Google Scholar 

  26. G.H. Guyatt, A.D. Oxman, G.E. Vist, R. Kunz, Y. Falck-Ytter, P. Alonso-Coello, H.J. Schunemann; G.W. Group, GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650), 924–926 (2008). https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  27. M.J. Bradburn, J.J. Deeks, J.A. Berlin, A. Russell Localio, Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat. Med. 26(1), 53–77 (2007). https://doi.org/10.1002/sim.2528

    Article  PubMed  Google Scholar 

  28. J.P. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat. Med. 21(11), 1539–1558 (2002). https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  29. H. Hui, A. Nourparvar, X. Zhao, R. Perfetti, Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5’-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144(4), 1444–1455 (2003). https://doi.org/10.1210/en.2002-220897

    Article  CAS  PubMed  Google Scholar 

  30. J. Zhang, Y. Tokui, K. Yamagata, J. Kozawa, K. Sayama, H. Iwahashi, K. Okita, M. Miuchi, H. Konya, T. Hamaguchi, M. Namba, I. Shimomura, J.I. Miyagawa, Continuous stimulation of human glucagon-like peptide-1 (7-36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia 50(9), 1900–1909 (2007). https://doi.org/10.1007/s00125-007-0737-6

    Article  CAS  PubMed  Google Scholar 

  31. A.A. Gumbs, Obesity, pancreatitis, and pancreatic cancer. Obes. Surg. 18(9), 1183–1187 (2008). https://doi.org/10.1007/s11695-008-9599-3

    Article  PubMed  Google Scholar 

  32. M.A. Nauck, A critical analysis of the clinical use of incretin-based therapies: the benefits by far outweigh the potential risks. Diabetes Care 36(7), 2126–2132 (2013). https://doi.org/10.2337/dc12-2504

    Article  PubMed  PubMed Central  Google Scholar 

  33. C. Cao, S. Yang, Z. Zhou, GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis of randomized controlled trials. Endocrine (2019). https://doi.org/10.1007/s12020-019-02055-z

  34. M. Monami, I. Dicembrini, C. Nardini, I. Fiordelli, E. Mannucci, Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diabetes Res Clin. Pract. 103(2), 269–275 (2014). https://doi.org/10.1016/j.diabres.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  35. S. Yachida, S. Jones, I. Bozic, T. Antal, R. Leary, B. Fu, M. Kamiyama, R.H. Hruban, J.R. Eshleman, M.A. Nowak, V.E. Velculescu, K.W. Kinzler, B. Vogelstein, C.A. Iacobuzio-Donahue, Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319), 1114–1117 (2010). https://doi.org/10.1038/nature09515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

All authors collectively designed the study. C.C. and S.Y. collected, extracted, and analyzed the data. C.C. wrote the manuscript, and Z.Z. reviewed and edited the manuscript. All authors critically revised the paper for important intellectual content and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Yang, S. & Zhou, Z. GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials. Endocrine 68, 518–525 (2020). https://doi.org/10.1007/s12020-020-02223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02223-6

Keywords

Navigation