Log in

Clinical outcomes in the management of congenital adrenal hyperplasia

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Congenital adrenal hyperplasia (CAH) is a group of disorders affecting adrenal steroid synthesis. The most common form, 21-hydroxylase deficiency, leads to decreased production of cortisol and aldosterone with increased androgen secretion. In classic CAH glucocorticoid treatment can be life-saving, and provides symptom control, but must be given in an unphysiological manner with the risk of negative long-term outcomes. A late diagnosis or a severe phenotype or genotype has also a negative impact. These factors can result in impaired quality of life (QoL), increased cardiometabolic risk, short stature, osteoporosis and fractures, benign tumors, decreased fertility, and vocal problems. The prognosis has improved during the last decades, thanks to better clinical management and nowadays the most affected patients seem to have a good QoL. Very few patients above the age of 60 years have, however, been studied. Classifying patients according to genotype may give additional useful clinical information. The introduction of neonatal CAH screening may enhance long-term results. Monitoring of different risk factors and negative consequences should be done regularly in an attempt to improve clinical outcomes further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. de Crecchio, Sopra un caso di apparenzi virili in una donna. Morgagni 7, 154–188 (1865)

    Google Scholar 

  2. A.M. Butler, R.A. Ross, N.B. Talbot, Probable adrenal insufficiency in an infant: report of a case. J. Pediatr. 15, 831–835 (1939)

    Article  Google Scholar 

  3. L. Wilkins, R.A. Lewis, R. Klein, E. Rosemberg, The suppression of androgen secretion by cortisone in a case of congenital adrenal hyperplasia. Bull. Johns Hopkins Hosp. 86(4), 249–252 (1950)

    PubMed  CAS  Google Scholar 

  4. L. Wilkins, R.A. Lewis, R. Klein, L.I. Gardner, J.F. Crigler Jr., E. Rosemberg, C.J. Migeon, Treatment of congenital adrenal hyperplasia with cortisone. J. Clin. Endocrinol. Metab. 11(1), 1–25 (1951)

    Article  PubMed  CAS  Google Scholar 

  5. P.C. White, M.I. New, B. Dupont, HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc. Natl. Acad. Sci. USA 81(23), 7505–7509 (1984)

    Article  PubMed  CAS  Google Scholar 

  6. P.C. White, P.W. Speiser, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21(3), 245–291 (2000)

    Article  PubMed  CAS  Google Scholar 

  7. D.P. Merke, S.R. Bornstein, Congenital adrenal hyperplasia. Lancet 365(9477), 2125–2136 (2005). doi:10.1016/S0140-6736(05)66736-0

    Article  PubMed  Google Scholar 

  8. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Metabolic profile and body composition in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(1), 110–116 (2007). doi:10.1210/jc.2006-1350

    Article  PubMed  CAS  Google Scholar 

  9. H. Falhammar, H. Filipsson Nystrom, A. Wedell, M. Thoren, Cardiovascular risk, metabolic profile, and body composition in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 164(2), 285–293 (2011). doi:10.1530/EJE-10-0877

    Article  PubMed  CAS  Google Scholar 

  10. P.W. Speiser, R. Azziz, L.S. Baskin, L. Ghizzoni, T.W. Hensle, D.P. Merke, H.F. Meyer-Bahlburg, W.L. Miller, V.M. Montori, S.E. Oberfield, M. Ritzen, P.C. White, Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95(9), 4133–4160 (2010). doi:10.1210/jc.2009-2631

    Article  PubMed  CAS  Google Scholar 

  11. L.H. Braga, J.L. Pippi Salle, Congenital adrenal hyperplasia: a critical appraisal of the evolution of feminizing genitoplasty and the controversies surrounding gender reassignment. Eur. J. Pediatr. Surg. 19(4), 203–210 (2009). doi:10.1055/s-0029-1233490

    Article  PubMed  CAS  Google Scholar 

  12. A. Nordenskjold, G. Holmdahl, L. Frisen, H. Falhammar, H. Filipsson, M. Thoren, P.O. Janson, K. Hagenfeldt, Type of mutation and surgical procedure affect long-term quality of life for women with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 93(2), 380–386 (2008). doi:10.1210/jc.2007-0556

    Article  PubMed  CAS  Google Scholar 

  13. M.A. Abdullah, M. Katugampola, S. al-Habib, N. al-Jurayyan, A. al-Samarrai, A. Al-Nuaim, P.J. Patel, M. Niazi, Ambiguous genitalia: medical, socio-cultural and religious factors affecting management in Saudi Arabia. Ann. Trop. Paediatr. 11(4), 343–348 (1991)

    PubMed  CAS  Google Scholar 

  14. N. Kandemir, N. Yordam, Congenital adrenal hyperplasia in Turkey: a review of 273 patients. Acta Paediatr. 86(1), 22–25 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. C. Moran, R. Azziz, E. Carmina, D. Dewailly, F. Fruzzetti, L. Ibanez, E.S. Knochenhauer, J.A. Marcondes, B.B. Mendonca, D. Pignatelli, M. Pugeat, V. Rohmer, P.W. Speiser, S.F. Witchel, 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am. J. Obstet. Gynecol. 183(6), 1468–1474 (2000). doi:10.1067/mob.2000.108020

    Article  PubMed  CAS  Google Scholar 

  16. H. Falhammar, M. Thoren, K. Hagenfeldt, A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classic congenital adrenal hyperplasia due to a novel CYP21 mutation. J. Endocrinol. Invest. 31(2), 176–180 (2008)

    PubMed  CAS  Google Scholar 

  17. R. Azziz, E. Carmina, D. Dewailly, E. Diamanti-Kandarakis, H.F. Escobar-Morreale, W. Futterweit, O.E. Janssen, R.S. Legro, R.J. Norman, A.E. Taylor, S.F. Witchel, The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91(2), 456–488 (2009). doi:10.1016/j.fertnstert.2008.06.035

    Article  PubMed  Google Scholar 

  18. M.I. New, Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(11), 4205–4214 (2006). doi:10.1210/jc.2006-1645

    Article  PubMed  CAS  Google Scholar 

  19. M. Placzek, B. Arnold, H. Schmidt, S. Gaube, E. Keller, G. Plewig, K. Degitz, Elevated 17-hydroxyprogesterone serum values in male patients with acne. J. Am. Acad. Dermatol. 53(6), 955–958 (2005). doi:10.1016/j.jaad.2005.07.014

    Article  PubMed  Google Scholar 

  20. K.E. Sharquie, A.A. Noaimi, B.O. Saleh, Z.N. Anbar, The frequency of 21-alpha hydroxylase enzyme deficiency and related sex hormones in Iraqi healthy male subjects versus patients with acne vulgaris. Saudi Med. J. 30(12), 1547–1550 (2009)

    PubMed  Google Scholar 

  21. V. Caputo, S. Fiorella, S. Curiale, A. Caputo, M. Niceta, Refractory acne and 21-hydroxylase deficiency in a selected group of female patients. Dermatology 220(2), 121–127 (2010). doi:10.1159/000277608

    Article  PubMed  CAS  Google Scholar 

  22. H. Falhammar, M. Thoren, An 88-year-old woman diagnosed with adrenal tumor and congenital adrenal hyperplasia: connection or coincidence? J. Endocrinol. Invest. 28(5), 449–453 (2005)

    PubMed  CAS  Google Scholar 

  23. P.C. White, Neonatal screening for congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 5(9), 490–498 (2009). doi:10.1038/nrendo.2009.148

    Article  PubMed  CAS  Google Scholar 

  24. A. Thilén, A. Nordenstrom, L. Hagenfeldt, U. von Dobeln, C. Guthenberg, A. Larsson, Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics 101(4), E11 (1998)

    Article  Google Scholar 

  25. A. Nordenstrom, S. Ahmed, J. Jones, M. Coleman, D.A. Price, P.E. Clayton, C.M. Hall, Female preponderance in congenital adrenal hyperplasia due to CYP21 deficiency in England: implications for neonatal screening. Horm. Res. 63(1), 22–28 (2005). doi:10.1159/000082896

    Article  PubMed  CAS  Google Scholar 

  26. S.Y. Pang, M.A. Wallace, L. Hofman, H.C. Thuline, C. Dorche, I.C. Lyon, R.H. Dobbins, S. Kling, K. Fujieda, S. Suwa, Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 81(6), 866–874 (1988)

    PubMed  CAS  Google Scholar 

  27. B.L. Therrell Jr., S.A. Berenbaum, V. Manter-Kapanke, J. Simmank, K. Korman, L. Prentice, J. Gonzalez, S. Gunn, Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 101(4 Pt 1), 583–590 (1998)

    Article  PubMed  Google Scholar 

  28. P.W. Speiser, B. Dupont, P. Rubinstein, A. Piazza, A. Kastelan, M.I. New, High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 37(4), 650–667 (1985)

    PubMed  CAS  Google Scholar 

  29. M.I. New, Nonclassic 21-hydroxylase deficiency. Fertil. Steril. 86(Suppl 1), S2 (2006). doi:10.1016/j.fertnstert.2006.03.005

    Article  PubMed  Google Scholar 

  30. A. Wedell, Molecular genetics of 21-hydroxylase deficiency. Endocr. Dev. 20, 80–87 (2011). doi:10.1159/000321223

    Article  PubMed  CAS  Google Scholar 

  31. A. Wedell, A. Thilen, E.M. Ritzen, B. Stengler, H. Luthman, Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 78(5), 1145–1152 (1994)

    Article  PubMed  CAS  Google Scholar 

  32. J. Jaaskelainen, A. Levo, R. Voutilainen, J. Partanen, Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population. J. Clin. Endocrinol. Metab. 82(10), 3293–3297 (1997)

    Article  PubMed  CAS  Google Scholar 

  33. L. Frisen, A. Nordenstrom, H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, M. Thoren, K. Hagenfeldt, A. Moller, A. Nordenskjold, Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. J. Clin. Endocrinol. Metab. 94(9), 3432–3439 (2009). doi:10.1210/jc.2009-0636

    Article  PubMed  CAS  Google Scholar 

  34. A. Nordenstrom, L. Frisen, H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, M. Thoren, K. Hagenfeldt, A. Nordenskjold, Sexual function and surgical outcome in women with congenital adrenal hyperplasia due to CYP21A2 deficiency: clinical perspective and the patients’ perception. J. Clin. Endocrinol. Metab. 95(8), 3633–3640 (2010). doi:10.1210/jc.2009-2639

    Article  PubMed  CAS  Google Scholar 

  35. K. Hagenfeldt, P.O. Janson, G. Holmdahl, H. Falhammar, H. Filipsson, L. Frisen, M. Thoren, A. Nordenskjold, Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum. Reprod. 23(7), 1607–1613 (2008). doi:10.1093/humrep/den118

    Article  PubMed  CAS  Google Scholar 

  36. S. Verma, C. Vanryzin, N. Sinaii, M.S. Kim, L.K. Nieman, S. Ravindran, K.A. Calis, W. Arlt, R.J. Ross, D.P. Merke, A pharmacokinetic and pharmacodynamic study of delayed- and extended-release hydrocortisone (Chronocort) vs. conventional hydrocortisone (Cortef) in the treatment of congenital adrenal hyperplasia. Clin. Endocrinol. (Oxf) 72(4), 441–447 (2010). doi:10.1111/j.1365-2265.2009.03636.x

    Article  CAS  Google Scholar 

  37. E. Charmandari, P.C. Hindmarsh, A. Johnston, C.G. Brook, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty. J. Clin. Endocrinol. Metab. 86(6), 2701–2708 (2001)

    Article  PubMed  CAS  Google Scholar 

  38. S.M. Bryan, J.W. Honour, P.C. Hindmarsh, Management of altered hydrocortisone pharmacokinetics in a boy with congenital adrenal hyperplasia using a continuous subcutaneous hydrocortisone infusion. J. Clin. Endocrinol. Metab. 94(9), 3477–3480 (2009). doi:10.1210/jc.2009-0630

    Article  PubMed  CAS  Google Scholar 

  39. G. Tuli, I. Rabbone, S. Einaudi, V. di Gianni, D. Tessaris, E. Gioia, R. Lala, F. Cerutti, Continuous subcutaneous hydrocortisone infusion (CSHI) in a young adolescent with congenital adrenal hyperplasia (CAH). J. Pediatr. Endocrinol. Metab. 24(7–8), 561–563 (2011)

    Article  PubMed  Google Scholar 

  40. A. Dauber, M. Kellogg, J.A. Majzoub, Monitoring of therapy in congenital adrenal hyperplasia. Clin. Chem. 56(8), 1245–1251 (2010). doi:10.1373/clinchem.2010.146035

    Article  PubMed  CAS  Google Scholar 

  41. P.E. Clayton, W.L. Miller, S.E. Oberfield, E.M. Ritzen, W.G. Sippell, P.W. Speiser, Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society. Horm. Res. 58(4), 188–195 (2002)

    Article  PubMed  CAS  Google Scholar 

  42. I. Nermoen, E.S. Husebye, J. Svartberg, K. Lovas, Subjective health status in men and women with congenital adrenal hyperplasia: a population-based survey in Norway. Eur. J. Endocrinol. 163(3), 453–459 (2010). doi:10.1530/EJE-10-0284

    Article  PubMed  CAS  Google Scholar 

  43. W. Arlt, D.S. Willis, S.H. Wild, N. Krone, E.J. Doherty, S. Hahner, T.S. Han, P.V. Carroll, G.S. Conway, D.A. Rees, R.H. Stimson, B.R. Walker, J.M. Connell, R.J. Ross, Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J. Clin. Endocrinol. Metab. 95(11), 5110–5121 (2010). doi:10.1210/jc.2010-0917

    Article  PubMed  CAS  Google Scholar 

  44. C.M. Ogilvie, N.S. Crouch, G. Rumsby, S.M. Creighton, L.M. Liao, G.S. Conway, Congenital adrenal hyperplasia in adults: a review of medical, surgical and psychological issues. Clin. Endocrinol. 64(1), 2–11 (2006). doi:10.1111/j.1365-2265.2005.02410.x

    Article  CAS  Google Scholar 

  45. A. Nordenstrom, C. Marcus, M. Axelson, A. Wedell, E.M. Ritzen, Failure of cortisone acetate treatment in congenital adrenal hyperplasia because of defective 11beta-hydroxysteroid dehydrogenase reductase activity. J. Clin. Endocrinol. Metab. 84(4), 1210–1213 (1999)

    Article  PubMed  CAS  Google Scholar 

  46. J. Fiet, B. Gueux, M.C. Raux-DeMay, F. Kuttenn, P. Vexiau, J.L. Brerault, P. Couillin, H. Galons, J.M. Villette, R. Julien et al., Increased plasma 21-deoxycorticosterone (21-DB) levels in late-onset adrenal 21-hydroxylase deficiency suggest a mild defect of the mineralocorticoid pathway. J. Clin. Endocrinol. Metab. 68(3), 542–547 (1989)

    Article  PubMed  CAS  Google Scholar 

  47. R.M. Williams, A. Deeb, K.K. Ong, W. Bich, P.R. Murgatroyd, I.A. Hughes, C.L. Acerini, Insulin sensitivity and body composition in children with classical and nonclassical congenital adrenal hyperplasia. Clin. Endocrinol. (Oxf) 72(2), 155–160 (2010). doi:10.1111/j.1365-2265.2009.03587.x

    Article  CAS  Google Scholar 

  48. P.W. Speiser, L. Agdere, H. Ueshiba, P.C. White, M.I. New, Aldosterone synthesis in salt-wasting congenital adrenal hyperplasia with complete absence of adrenal 21-hydroxylase. N. Engl. J. Med. 324(3), 145–149 (1991). doi:10.1056/NEJM199101173240302

    Article  PubMed  CAS  Google Scholar 

  49. T.H. Johannsen, C.P. Ripa, E.L. Mortensen, K.M. Main, Quality of life in 70 women with disorders of sex development. Eur. J. Endocrinol. 155(6), 877–885 (2006). doi:10.1530/eje.1.02294

    Article  PubMed  CAS  Google Scholar 

  50. N. Reisch, S. Hahner, B. Bleicken, L. Flade, F. Pedrosa Gil, M. Loeffler, M. Ventz, A. Hinz, F. Beuschlein, B. Allolio, M. Reincke, M. Quinkler, Quality of life is less impaired in adults with congenital adrenal hyperplasia because of 21-hydroxylase deficiency than in patients with primary adrenal insufficiency. Clin. Endocrinol. 74(2), 166–173 (2011). doi:10.1111/j.1365-2265.2010.03920.x

    Article  Google Scholar 

  51. U. Kuhnle, M. Bullinger, H.P. Schwarz, The quality of life in adult female patients with congenital adrenal hyperplasia: a comprehensive study of the impact of genital malformations and chronic disease on female patients life. Eur. J. Pediatr. 154(9), 708–716 (1995)

    Article  PubMed  CAS  Google Scholar 

  52. Malouf, M.A., Inman, A.G., Carr, A.G., Franco, J., Brooks, L.M.: Health-related quality of life, mental health and psychotherapeutic considerations for women diagnosed with a disorder of sexual development: congenital adrenal hyperplasia. Int J Pediatr Endocrinol 2010 (2010). doi:10.1155/2010/253465

  53. J. Jaaskelainen, R. Voutilainen, Long-term outcome of classical 21-hydroxylase deficiency: diagnosis, complications and quality of life. Acta Paediatr. 89(2), 183–187 (2000)

    Article  PubMed  CAS  Google Scholar 

  54. K. Muthusamy, M.B. Elamin, G. Smushkin, M.H. Murad, J.F. Lampropulos, K.B. Elamin, N.O. Abu Elnour, J.F. Gallegos-Orozco, M.M. Fatourechi, N. Agrwal, M.A. Lane, F.N. Albuquerque, P.J. Erwin, V.M. Montori, Clinical review: adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J. Clin. Endocrinol. Metab. 95(9), 4161–4172 (2010). doi:10.1210/jc.2009-2616

    Article  PubMed  CAS  Google Scholar 

  55. Falhammar, H.: Congenital Adrenal Hyperplasia in Adults. Karolinska Institutet (2010)

  56. E.A. Eugster, L.A. Dimeglio, J.C. Wright, G.R. Freidenberg, R. Seshadri, O.H. Pescovitz, Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J. Pediatr. 138(1), 26–32 (2001). doi:10.1067/mpd.2001.110527

    Article  PubMed  CAS  Google Scholar 

  57. A. Balsamo, A. Cicognani, L. Baldazzi, M. Barbaro, F. Baronio, M. Gennari, M. Bal, A. Cassio, K. Kontaxaki, E. Cacciari, CYP21 genotype, adult height, and pubertal development in 55 patients treated for 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 88(12), 5680–5688 (2003)

    Article  PubMed  CAS  Google Scholar 

  58. C.G. Bergstrand, Growth in congenital adrenal hyperplasia. Acta Paediatr. Scand. 55(5), 463–472 (1966)

    Article  PubMed  CAS  Google Scholar 

  59. M.D. Urban, P.A. Lee, C.J. Migeon, Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N. Engl. J. Med. 299(25), 1392–1396 (1978). doi:10.1056/NEJM197812212992505

    Article  PubMed  CAS  Google Scholar 

  60. R.T. Kirkland, B.S. Keenan, J.H. Holcombe, J.L. Kirkland, G.W. Clayton, The effect of therapy on mature height in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 47(6), 1320–1324 (1978)

    Article  PubMed  CAS  Google Scholar 

  61. J. DiMartino-Nardi, E. Stoner, A. O’Connell, M.I. New, The effect of treatment of final height in classical congenital adrenal hyperplasia (CAH). Acta Endocrinol. Suppl. (Copenh) 279, 305–314 (1986)

    CAS  Google Scholar 

  62. E. Canalis, G. Mazziotti, A. Giustina, J.P. Bilezikian, Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18(10), 1319–1328 (2007). doi:10.1007/s00198-007-0394-0

    Article  PubMed  CAS  Google Scholar 

  63. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(12), 4643–4649 (2007). doi:10.1210/jc.2007-0744

    Article  PubMed  CAS  Google Scholar 

  64. A. Bachelot, G. Plu-Bureau, E. Thibaud, K. Laborde, G. Pinto, D. Samara, C. Nihoul-Fekete, F. Kuttenn, M. Polak, P. Touraine, Long-term outcome of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. 67(6), 268–276 (2007). doi:10.1159/000098017

    Article  PubMed  CAS  Google Scholar 

  65. J.A. King, A.B. Wisniewski, B.J. Bankowski, K.A. Carson, H.A. Zacur, C.J. Migeon, Long-term corticosteroid replacement and bone mineral density in adult women with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 91(3), 865–869 (2006). doi:10.1210/jc.2005-0745

    Article  PubMed  CAS  Google Scholar 

  66. J. Jaaskelainen, R. Voutilainen, Bone mineral density in relation to glucocorticoid substitution therapy in adult patients with 21-hydroxylase deficiency. Clin. Endocrinol. (Oxf) 45(6), 707–713 (1996)

    Article  CAS  Google Scholar 

  67. K. Hagenfeldt, E. Martin Ritzen, H. Ringertz, J. Helleday, K. Carlstrom, Bone mass and body composition of adult women with congenital virilizing 21-hydroxylase deficiency after glucocorticoid treatment since infancy. Eur. J. Endocrinol. 143(5), 667–671 (2000)

    Article  PubMed  CAS  Google Scholar 

  68. M. Sciannamblo, G. Russo, D. Cuccato, G. Chiumello, S. Mora, Reduced bone mineral density and increased bone metabolism rate in young adult patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(11), 4453–4458 (2006). doi:10.1210/jc.2005-2823

    Article  PubMed  CAS  Google Scholar 

  69. C.Y. Guo, A.P. Weetman, R. Eastell, Bone turnover and bone mineral density in patients with congenital adrenal hyperplasia. Clin. Endocrinol. (Oxf) 45(5), 535–541 (1996)

    Article  CAS  Google Scholar 

  70. S. Mora, F. Saggion, G. Russo, G. Weber, A. Bellini, C. Prinster, G. Chiumello, Bone density in young patients with congenital adrenal hyperplasia. Bone 18(4), 337–340 (1996)

    Article  PubMed  CAS  Google Scholar 

  71. N.M. Stikkelbroeck, W.J. Oyen, G.J. van der Wilt, A.R. Hermus, B.J. Otten, Normal bone mineral density and lean body mass, but increased fat mass, in young adult patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 88(3), 1036–1042 (2003)

    Article  PubMed  CAS  Google Scholar 

  72. P. Christiansen, C. Molgaard, J. Muller, Normal bone mineral content in young adults with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. 61(3), 133–136 (2004). doi:10.1159/000075588

    Article  PubMed  CAS  Google Scholar 

  73. O. Arisaka, M. Hoshi, S. Kanazawa, M. Numata, D. Nakajima, S. Kanno, M. Negishi, K. Nishikura, A. Nitta, M. Imataka, T. Kuribayashi, K. Kano, Preliminary report: effect of adrenal androgen and estrogen on bone maturation and bone mineral density. Metabolism 50(4), 377–379 (2001). doi:10.1053/meta.2001.21678

    Article  PubMed  CAS  Google Scholar 

  74. R. Girgis, J.S. Winter, The effects of glucocorticoid replacement therapy on growth, bone mineral density, and bone turnover markers in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 82(12), 3926–3929 (1997)

    Article  PubMed  CAS  Google Scholar 

  75. A. Fleischman, J. Ringelheim, H.A. Feldman, C.M. Gordon, Bone mineral status in children with congenital adrenal hyperplasia. J. Pediatr. Endocrinol. Metab. 20(2), 227–235 (2007)

    Article  PubMed  CAS  Google Scholar 

  76. M. Gussinye, A. Carrascosa, N. Potau, M. Enrubia, E. Vicens-Calvet, L. Ibanez, D. Yeste, Bone mineral density in prepubertal and in adolescent and young adult patients with the salt-wasting form of congenital adrenal hyperplasia. Pediatrics 100(4), 671–674 (1997)

    Article  PubMed  CAS  Google Scholar 

  77. A. Zimmermann, P.G. Sido, E. Schulze, C. Al Khzouz, C. Lazea, C. Coldea, M.M. Weber, Bone mineral density and bone turnover in Romanian children and young adults with classical 21-hydroxylase deficiency are influenced by glucocorticoid replacement therapy. Clin. Endocrinol. 71(4), 477–484 (2009). doi:10.1111/j.1365-2265.2008.03518.x

    Article  CAS  Google Scholar 

  78. F.J. Cameron, B. Kaymakci, E.A. Byrt, P.R. Ebeling, G.L. Warne, J.D. Wark, Bone mineral density and body composition in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 80(7), 2238–2243 (1995)

    Article  PubMed  CAS  Google Scholar 

  79. C. Paganini, G. Radetti, C. Livieri, V. Braga, D. Migliavacca, S. Adami, Height, bone mineral density and bone markers in congenital adrenal hyperplasia. Horm. Res. 54(4), 164–168 (2000)

    Article  PubMed  CAS  Google Scholar 

  80. P.O. de Almeida Freire, S.H. de Lemos-Marini, A.T. Maciel-Guerra, A.M. Morcillo, M.T. Matias Baptista, M.P. de Mello, G. Guerra Jr., Classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a cross-sectional study of factors involved in bone mineral density. J. Bone Miner. Metab. 21(6), 396–401 (2003). doi:10.1007/s00774-003-0434-6

    Article  PubMed  CAS  Google Scholar 

  81. Z. Chakhtoura, A. Bachelot, D. Samara-Boustani, J.C. Ruiz, B. Donadille, J. Dulon, S. Christin-Maitre, C. Bouvattier, M.C. Raux-Demay, P. Bouchard, J.C. Carel, J. Leger, F. Kuttenn, M. Polak, P. Touraine, Impact of total cumulative glucocorticoid dose on bone mineral density in patients with 21-hydroxylase deficiency. Eur. J. Endocrinol. 158(6), 879–887 (2008). doi:10.1530/EJE-07-0887

    Article  PubMed  CAS  Google Scholar 

  82. S. Bjornsdottir, M. Saaf, S. Bensing, O. Kampe, K. Michaelsson, J.F. Ludvigsson, Risk of hip fracture in Addison’s disease: a population-based cohort study. J. Intern. Med. 270(2), 187–195 (2011). doi:10.1111/j.1365-2796.2011.02352.x

    Article  PubMed  CAS  Google Scholar 

  83. J. Helleday, B. Siwers, E.M. Ritzen, K. Carlstrom, Subnormal androgen and elevated progesterone levels in women treated for congenital virilizing 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 76(4), 933–936 (1993)

    Article  PubMed  CAS  Google Scholar 

  84. R.E. Cornean, P.C. Hindmarsh, C.G. Brook, Obesity in 21-hydroxylase deficient patients. Arch. Dis. Child. 78(3), 261–263 (1998)

    Article  PubMed  CAS  Google Scholar 

  85. T.M. Volkl, D. Simm, C. Beier, H.G. Dorr, Obesity among children and adolescents with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 117(1), e98–e105 (2006). doi:10.1542/peds.2005-1005

    Article  PubMed  Google Scholar 

  86. T.M. Volkl, D. Simm, A. Korner, W. Rascher, W. Kiess, J. Kratzsch, H.G. Dorr, Does an altered leptin axis play a role in obesity among children and adolescents with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency? Eur. J. Endocrinol. 160(2), 239–247 (2009). doi:10.1530/EJE-08-0770

    Article  PubMed  CAS  Google Scholar 

  87. H.J. Zhang, J. Yang, M.N. Zhang, C.Q. Liu, M. Xu, X.J. Li, S.Y. Yang, X.Y. Li, Metabolic disorders in newly diagnosed young adult female patients with simple virilizing 21-hydroxylase deficiency. Endocrine 38(2), 260–265 (2010). doi:10.1007/s12020-010-9382-9

    Article  PubMed  CAS  Google Scholar 

  88. R. Ness-Abramof, C.M. Apovian, Waist circumference measurement in clinical practice. Nutr. Clin. Pract. 23(4), 397–404 (2008). doi:10.1177/0884533608321700

    Article  PubMed  Google Scholar 

  89. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Increased liver enzymes in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. J. 56(4), 601–608 (2009). doi:10.1507/endocrj.K08E-312

    Article  PubMed  CAS  Google Scholar 

  90. C.F. Mooij, J.M. Kroese, F.C. Sweep, A.R. Hermus, C.J. Tack, Adult patients with congenital adrenal hyperplasia have elevated blood pressure but otherwise a normal cardiovascular risk profile. PLoS One 6(9), e24204 (2011). doi:10.1371/journal.pone.0024204

    Article  PubMed  CAS  Google Scholar 

  91. P. Sartorato, E. Zulian, S. Benedini, B. Mariniello, F. Schiavi, F. Bilora, G. Pozzan, N. Greggio, A. Pagnan, F. Mantero, C. Scaroni, Cardiovascular risk factors and ultrasound evaluation of intima-media thickness at common carotids, carotid bulbs, and femoral and abdominal aorta arteries in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(3), 1015–1018 (2007). doi:10.1210/jc.2006-1711

    Article  PubMed  CAS  Google Scholar 

  92. E. Charmandari, M. Weise, S.R. Bornstein, G. Eisenhofer, M.F. Keil, G.P. Chrousos, D.P. Merke, Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications. J. Clin. Endocrinol. Metab. 87(5), 2114–2120 (2002)

    Article  PubMed  CAS  Google Scholar 

  93. F. Saygili, A. Oge, C. Yilmaz, Hyperinsulinemia and insulin insensitivity in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency: the relationship between serum leptin levels and chronic hyperinsulinemia. Horm. Res. 63(6), 270–274 (2005). doi:10.1159/000086363

    Article  PubMed  CAS  Google Scholar 

  94. F. Bayraktar, D. Dereli, A.G. Ozgen, C. Yilmaz, Plasma homocysteine levels in polycystic ovary syndrome and congenital adrenal hyperplasia. Endocr. J. 51(6), 601–608 (2004)

    Article  PubMed  CAS  Google Scholar 

  95. A. Zimmermann, P. Grigorescu-Sido, C. AlKhzouz, K. Patberg, S. Bucerzan, E. Schulze, T. Zimmermann, H. Rossmann, H.C. Geiss, K.J. Lackner, M.M. Weber, Alterations in lipid and carbohydrate metabolism in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. Paediatr. 74(1), 41–49 (2010). doi:10.1159/000313368

    Article  PubMed  CAS  Google Scholar 

  96. P.W. Speiser, J. Serrat, M.I. New, J.M. Gertner, Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 75(6), 1421–1424 (1992)

    Article  PubMed  CAS  Google Scholar 

  97. F.J. Paula, L.M. Gouveia, G.M. Paccola, C.E. Piccinato, A.C. Moreira, M.C. Foss, Androgen-related effects on peripheral glucose metabolism in women with congenital adrenal hyperplasia. Horm. Metab. Res. 26(11), 552–556 (1994). doi:10.1055/s-2007-1001755

    Article  PubMed  CAS  Google Scholar 

  98. J.M. Kroese, C.F. Mooij, M. van der Graaf, A.R. Hermus, C.J. Tack, Pioglitazone improves insulin resistance and decreases blood pressure in adult patients with congenital adrenal hyperplasia. Eur. J. Endocrinol. 161(6), 887–894 (2009). doi:10.1530/EJE-09-0523

    Article  PubMed  CAS  Google Scholar 

  99. C. Livingstone, M. Collison, Sex steroids and insulin resistance. Clin. Sci. (Lond) 102(2), 151–166 (2002)

    Article  CAS  Google Scholar 

  100. T.H. Jones, Effects of testosterone on Type 2 diabetes and components of the metabolic syndrome. J. Diabetes 2(3), 146–156 (2010). doi:10.1111/j.1753-0407.2010.00085.x

    Article  PubMed  CAS  Google Scholar 

  101. D. Botero, A. Arango, M. Danon, F. Lifshitz, Lipid profile in congenital adrenal hyperplasia. Metabolism 49(6), 790–793 (2000). doi:10.1053/meta.2000.6261

    Article  PubMed  CAS  Google Scholar 

  102. L.A. Adams, O.R. Waters, M.W. Knuiman, R.R. Elliott, J.K. Olynyk, NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am. J. Gastroenterol. 104(4), 861–867 (2009). doi:10.1038/ajg.2009.67

    Article  PubMed  Google Scholar 

  103. E. Ruttmann, L.J. Brant, H. Concin, G. Diem, K. Rapp, H. Ulmer, Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163, 944 Austrian adults. Circulation 112(14), 2130–2137 (2005). doi:10.1161/CIRCULATIONAHA.105.552547

    Article  PubMed  CAS  Google Scholar 

  104. A.G. Rockall, S.A. Sohaib, D. Evans, G. Kaltsas, A.M. Isidori, J.P. Monson, G.M. Besser, A.B. Grossman, R.H. Reznek, Hepatic steatosis in Cushing’s syndrome: a radiological assessment using computed tomography. Eur. J. Endocrinol. 149(6), 543–548 (2003)

    Article  PubMed  CAS  Google Scholar 

  105. S. Itoh, M. Igarashi, Y. Tsukada, A. Ichinoe, Nonalcoholic fatty liver with alcoholic hyalin after long-term glucocorticoid therapy. Acta Hepatogastroenterol. (Stuttg) 24(6), 415–418 (1977)

    CAS  Google Scholar 

  106. T.L. Setji, N.D. Holland, L.L. Sanders, K.C. Pereira, A.M. Diehl, A.J. Brown, Nonalcoholic steatohepatitis and nonalcoholic Fatty liver disease in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91(5), 1741–1747 (2006). doi:10.1210/jc.2005-2774

    Article  PubMed  CAS  Google Scholar 

  107. T.M. Volkl, D. Simm, A. Korner, W. Kiess, J. Kratzsch, H.G. Dorr, Adiponectin levels are high in children with classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency. Acta Paediatr. 98(5), 885–891 (2009). doi:10.1111/j.1651-2227.2009.01231.x

    Article  PubMed  CAS  Google Scholar 

  108. S. Poyrazoglu, H. Gunoz, F. Darendeliler, Serum leptin levels in patients with 21-hydroxylase deficiency before and after treatment. Turk. J. Pediatr. 45(1), 33–38 (2003)

    PubMed  Google Scholar 

  109. T.M. Volkl, D. Simm, J. Dotsch, W. Rascher, H.G. Dorr, Altered 24-hour blood pressure profiles in children and adolescents with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(12), 4888–4895 (2006). doi:10.1210/jc.2006-1069

    Article  PubMed  CAS  Google Scholar 

  110. K.S. de Silva, S. Kanumakala, J.J. Brown, C.L. Jones, G.L. Warne, 24-hour ambulatory blood pressure profile in patients with congenital adrenal hyperplasia–a preliminary report. J. Pediatr. Endocrinol. Metab. 17(8), 1089–1095 (2004)

    Article  PubMed  Google Scholar 

  111. W. Hoepffner, A. Herrmann, H. Willgerodt, E. Keller, Blood pressure in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Pediatr. Endocrinol. Metab. 19(5), 705–711 (2006)

    Article  PubMed  CAS  Google Scholar 

  112. T.D. Nebesio, E.A. Eugster, Observation of hypertension in children with 21-hydroxylase deficiency: a preliminary report. Endocrine 30(3), 279–282 (2006). doi:10.1007/s12020-006-0005-4

    Article  PubMed  CAS  Google Scholar 

  113. E.F. Roche, E. Charmandari, M.T. Dattani, P.C. Hindmarsh, Blood pressure in children and adolescents with congenital adrenal hyperplasia (21-hydroxylase deficiency): a preliminary report. Clin. Endocrinol. 58(5), 589–596 (2003)

    Article  Google Scholar 

  114. C.F. Mooij, L. Kapusta, B.J. Otten, H.L. Claahsen-van der Grinten, Blood pressure in the first year of life in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a pilot study. Horm. Res. Paediatr. 74(5), 328–332 (2010). doi:10.1159/000308891

    Article  PubMed  CAS  Google Scholar 

  115. W.B. Kannel, C. Kannel, R.S. Paffenbarger Jr., L.A. Cupples, Heart rate and cardiovascular mortality: the Framingham Study. Am. Heart J. 113(6), 1489–1494 (1987)

    Article  PubMed  CAS  Google Scholar 

  116. A.G. Shaper, G. Wannamethee, P.W. Macfarlane, M. Walker, Heart rate, ischaemic heart disease, and sudden cardiac death in middle-aged British men. Br Heart J 70(1), 49–55 (1993)

    Article  PubMed  CAS  Google Scholar 

  117. G.B. Mensink, H. Hoffmeister, The relationship between resting heart rate and all-cause, cardiovascular and cancer mortality. Eur. Heart J. 18(9), 1404–1410 (1997)

    Article  PubMed  CAS  Google Scholar 

  118. M. Weise, S.L. Mehlinger, B. Drinkard, E. Rawson, E. Charmandari, M. Hiroi, G. Eisenhofer, J.A. Yanovski, G.P. Chrousos, D.P. Merke, Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glucose elevation in response to high-intensity exercise. J. Clin. Endocrinol. Metab. 89(2), 591–597 (2004)

    Article  PubMed  CAS  Google Scholar 

  119. F.G. Riepe, N. Krone, S.N. Kruger, F.C. Sweep, J.W. Lenders, J. Dotsch, H. Monig, W.G. Sippell, C.J. Partsch, Absence of exercise-induced leptin suppression associated with insufficient epinephrine reserve in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Exp. Clin. Endocrinol. Diabetes 114(3), 105–110 (2006). doi:10.1055/s-2005-865836

    Article  PubMed  CAS  Google Scholar 

  120. L. Green-Golan, C. Yates, B. Drinkard, C. VanRyzin, G. Eisenhofer, M. Weise, D.P. Merke, Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glycemic control during prolonged moderate-intensity exercise. J. Clin. Endocrinol. Metab. 92(8), 3019–3024 (2007). doi:10.1210/jc.2007-0493

    Article  PubMed  CAS  Google Scholar 

  121. H.L. Claahsen-van der Grinten, B.J. Otten, F.C. Sweep, P.N. Span, H.A. Ross, E.J. Meuleman, A.R. Hermus, Testicular tumors in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency show functional features of adrenocortical tissue. J. Clin. Endocrinol. Metab. 92(9), 3674–3680 (2007). doi:10.1210/jc.2007-0337

    Article  PubMed  CAS  Google Scholar 

  122. H.L. Claahsen-van der Grinten, F.C. Sweep, J.G. Blickman, A.R. Hermus, B.J. Otten, Prevalence of testicular adrenal rest tumours in male children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 157(3), 339–344 (2007). doi:10.1530/EJE-07-0201

    Article  PubMed  CAS  Google Scholar 

  123. A. Martinez-Aguayo, A. Rocha, N. Rojas, C. Garcia, R. Parra, M. Lagos, L. Valdivia, H. Poggi, A. Cattani, Testicular adrenal rest tumors and Leydig and Sertoli cell function in boys with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92(12), 4583–4589 (2007). doi:10.1210/jc.2007-0383

    Article  PubMed  CAS  Google Scholar 

  124. D.R. Shanklin, A.P. Richardson Jr., G. Rothstein, Testicular hilar nodules in adrenogenital syndrome. The nature of the nodules. Am. J. Dis. Child. 106, 243–250 (1963)

    PubMed  CAS  Google Scholar 

  125. H.L. Claahsen-van der Grinten, B.J. Otten, M.M. Stikkelbroeck, F.C. Sweep, A.R. Hermus, Testicular adrenal rest tumours in congenital adrenal hyperplasia. Best Pract. Res. Clin. Endocrinol. Metab. 23(2), 209–220 (2009). doi:10.1016/j.beem.2008.09.007

    Article  PubMed  CAS  Google Scholar 

  126. N.A. Avila, A. Premkumar, D.P. Merke, Testicular adrenal rest tissue in congenital adrenal hyperplasia: comparison of MR imaging and sonographic findings. AJR Am. J. Roentgenol. 172(4), 1003–1006 (1999)

    PubMed  CAS  Google Scholar 

  127. N.M. Stikkelbroeck, B.J. Otten, A. Pasic, G.J. Jager, C.G. Sweep, K. Noordam, A.R. Hermus, High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86(12), 5721–5728 (2001)

    Article  PubMed  CAS  Google Scholar 

  128. Falhammar, H., Filipsson Nystrom, H., Ekstrom, U., Granberg, S., Wedell, A., Thoren, M.: Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur J Endocrinol (2011). doi:10.1530/EJE-11-0828

  129. N.A. Avila, A. Premkumar, T.H. Shawker, J.V. Jones, L. Laue, G.B. Cutler Jr., Testicular adrenal rest tissue in congenital adrenal hyperplasia: findings at Gray-scale and color Doppler US. Radiology 198(1), 99–104 (1996)

    PubMed  CAS  Google Scholar 

  130. J. Jaaskelainen, O. Kiekara, M. Hippelainen, R. Voutilainen, Pituitary gonadal axis and child rate in males with classical 21-hydroxylase deficiency. J. Endocrinol. Invest. 23(1), 23–27 (2000)

    PubMed  CAS  Google Scholar 

  131. M.S. Cabrera, M.G. Vogiatzi, M.I. New, Long term outcome in adult males with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86(7), 3070–3078 (2001)

    Article  PubMed  CAS  Google Scholar 

  132. N. Reisch, L. Flade, M. Scherr, M. Rottenkolber, F. Pedrosa Gil, M. Bidlingmaier, H. Wolff, H.P. Schwarz, M. Quinkler, F. Beuschlein, M. Reincke, High prevalence of reduced fecundity in men with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 94(5), 1665–1670 (2009). doi:10.1210/jc.2008-1414

    Article  PubMed  CAS  Google Scholar 

  133. A. Mouritsen, N. Jorgensen, K.M. Main, M. Schwartz, A. Juul, Testicular adrenal rest tumours in boys, adolescents and adult men with congenital adrenal hyperplasia may be associated with the CYP21A2 mutation. Int. J. Androl. 33(3), 521–527 (2010). doi:10.1111/j.1365-2605.2009.00967.x

    Article  PubMed  CAS  Google Scholar 

  134. Nermoen, I., Rorvik, J., Holmedal, S.H., Hykkerud, D.L., Fougner, K.J., Svartberg, J., Husebye, E.S., Lovas, K.: High frequency of adrenal myelolipomas and testicular adrenal rest tumours in adult norwegian patients with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. (2011). doi:10.1111/j.1365-2265.2011.04151.x

  135. M.J. Kang, J.H. Kim, S.H. Lee, Y.A. Lee, C.H. Shin, S.W. Yang, The prevalence of testicular adrenal rest tumors and associated factors in postpubertal patients with congenital adrenal hyperplasia caused by 21-hydroxylase deficiency. Endocr. J. 58(6), 501–508 (2011)

    Article  PubMed  CAS  Google Scholar 

  136. B.R. Walker, S.J. Skoog, B.H. Winslow, D.A. Canning, E.S. Tank, Testis sparing surgery for steroid unresponsive testicular tumors of the adrenogenital syndrome. J. Urol. 157(4), 1460–1463 (1997)

    Article  PubMed  CAS  Google Scholar 

  137. N.M. Stikkelbroeck, A.R. Hermus, H.M. Suliman, G.J. Jager, B.J. Otten, Asymptomatic testicular adrenal rest tumours in adolescent and adult males with congenital adrenal hyperplasia: basal and follow-up investigation after 2.6 years. J. Pediatr. Endocrinol. Metab. 17(4), 645–653 (2004)

    Article  PubMed  Google Scholar 

  138. N. Reisch, M. Scherr, L. Flade, M. Bidlingmaier, H.P. Schwarz, U. Muller-Lisse, M. Reincke, M. Quinkler, F. Beuschlein, Total adrenal volume but not testicular adrenal rest tumor volume is associated with hormonal control in patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95(5), 2065–2072 (2010). doi:10.1210/jc.2009-1929

    Article  PubMed  CAS  Google Scholar 

  139. T. Tiryaki, Z. Aycan, S. Hucumenoglu, H. Atayurt, Testis sparing surgery for steroid unresponsive testicular tumors of the congenital adrenal hyperplasia. Pediatr. Surg. Int. 21(10), 853–855 (2005). doi:10.1007/s00383-005-1547-x

    Article  PubMed  Google Scholar 

  140. H.L. Claahsen-van der Grinten, B.J. Otten, S. Takahashi, E.J. Meuleman, C. Hulsbergen-van de Kaa, F.C. Sweep, A.R. Hermus, Testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia: evaluation of pituitary-gonadal function before and after successful testis-sparing surgery in eight patients. J. Clin. Endocrinol. Metab. 92(2), 612–615 (2007). doi:10.1210/jc.2006-1311

    Article  PubMed  CAS  Google Scholar 

  141. N.M. Stikkelbroeck, A.R. Hermus, D. Schouten, H.M. Suliman, G.J. Jager, D.D. Braat, B.J. Otten, Prevalence of ovarian adrenal rest tumours and polycystic ovaries in females with congenital adrenal hyperplasia: results of ultrasonography and MR imaging. Eur. Radiol. 14(10), 1802–1806 (2004). doi:10.1007/s00330-004-2329-x

    Article  PubMed  Google Scholar 

  142. D. Tiosano, E. Vlodavsky, S. Filmar, Z. Weiner, D. Goldsher, R. Bar-Shalom, Ovarian adrenal rest tumor in a congenital adrenal hyperplasia patient with adrenocorticotropin hypersecretion following adrenalectomy. Horm. Res. Paediatr. 74(3), 223–228 (2010). doi:10.1159/000295722

    Article  PubMed  CAS  Google Scholar 

  143. H. Selye, H. Stone, Hormonally induced transformation of adrenal into myeloid tissue. Am. J. Pathol. 26(2), 211–233 (1950)

    PubMed  CAS  Google Scholar 

  144. S. Jaresch, E. Kornely, H.K. Kley, R. Schlaghecke, Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 74(3), 685–689 (1992)

    Article  PubMed  CAS  Google Scholar 

  145. S.M. Baumgartner-Parzer, S. Pauschenwein, W. Waldhausl, K. Polzler, P. Nowotny, H. Vierhapper, Increased prevalence of heterozygous 21-OH germline mutations in patients with adrenal incidentalomas. Clin. Endocrinol. 56(6), 811–816 (2002)

    Article  CAS  Google Scholar 

  146. A. Patocs, M. Toth, C. Barta, M. Sasvari-Szekely, I. Varga, N. Szucs, C. Jakab, E. Glaz, K. Racz, Hormonal evaluation and mutation screening for steroid 21-hydroxylase deficiency in patients with unilateral and bilateral adrenal incidentalomas. Eur. J. Endocrinol. 147(3), 349–355 (2002)

    Article  PubMed  CAS  Google Scholar 

  147. P.W. Speiser, L. Heier, J. Serrat, M.I. New, R. Nass, Failure of steroid replacement to consistently normalize pituitary function in congenital adrenal hyperplasia: hormonal and MRI data. Horm. Res. 44(6), 241–246 (1995)

    Article  PubMed  CAS  Google Scholar 

  148. J.J. Van Wyk, E.M. Ritzen, The role of bilateral adrenalectomy in the treatment of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 88(7), 2993–2998 (2003)

    Article  PubMed  CAS  Google Scholar 

  149. C.M. Ogilvie, G. Rumsby, T. Kurzawinski, G.S. Conway, Outcome of bilateral adrenalectomy in congenital adrenal hyperplasia: one unit’s experience. Eur. J. Endocrinol. 154(3), 405–408 (2006). doi:10.1530/eje.1.02096

    Article  PubMed  CAS  Google Scholar 

  150. E. Charmandari, G.P. Chrousos, D.P. Merke, Adrenocorticotropin hypersecretion and pituitary microadenoma following bilateral adrenalectomy in a patient with classic 21-hydroxylase deficiency. J. Pediatr. Endocrinol. Metab. 18(1), 97–101 (2005)

    Article  PubMed  Google Scholar 

  151. J. Jaaskelainen, M. Hippelainen, O. Kiekara, R. Voutilainen, Child rate, pregnancy outcome and ovarian function in females with classical 21-hydroxylase deficiency. Acta Obstet. Gynecol. Scand. 79(8), 687–692 (2000)

    PubMed  CAS  Google Scholar 

  152. R.M. Mulaikal, C.J. Migeon, J.A. Rock, Fertility rates in female patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 316(4), 178–182 (1987). doi:10.1056/NEJM198701223160402

    Article  PubMed  CAS  Google Scholar 

  153. N. Krone, I. Wachter, M. Stefanidou, A.A. Roscher, H.P. Schwarz, Mothers with congenital adrenal hyperplasia and their children: outcome of pregnancy, birth and childhood. Clin. Endocrinol. (Oxf) 55(4), 523–529 (2001)

    Article  CAS  Google Scholar 

  154. F. Gastaud, C. Bouvattier, L. Duranteau, R. Brauner, E. Thibaud, F. Kutten, P. Bougneres, Impaired sexual and reproductive outcomes in women with classical forms of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92(4), 1391–1396 (2007). doi:10.1210/jc.2006-1757

    Article  PubMed  CAS  Google Scholar 

  155. M. Bidet, C. Bellanne-Chantelot, M.B. Galand-Portier, J.L. Golmard, V. Tardy, Y. Morel, S. Clauin, C. Coussieu, P. Boudou, I. Mowzowicz, A. Bachelot, P. Touraine, F. Kuttenn, Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95(3), 1182–1190 (2010). doi:10.1210/jc.2009-1383

    Article  PubMed  CAS  Google Scholar 

  156. C. Moran, R. Azziz, N. Weintrob, S.F. Witchel, V. Rohmer, D. Dewailly, J.A. Marcondes, M. Pugeat, P.W. Speiser, D. Pignatelli, B.B. Mendonca, T.A. Bachega, H.F. Escobar-Morreale, E. Carmina, F. Fruzzetti, F. Kelestimur, Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J. Clin. Endocrinol. Metab. 91(9), 3451–3456 (2006). doi:10.1210/jc.2006-0062

    Article  PubMed  CAS  Google Scholar 

  157. A. Casteras, P. De Silva, G. Rumsby, G.S. Conway, Reassessing fecundity in women with classical congenital adrenal hyperplasia (CAH): normal pregnancy rate but reduced fertility rate. Clin. Endocrinol. 70(6), 833–837 (2009). doi:10.1111/j.1365-2265.2009.03563.x

    Article  Google Scholar 

  158. H. Falhammar, Non-classic congenital adrenal hyperplasia due to 21-hydoxylase deficiency as a cause of infertility and miscarriages. N. Z. Med. J. 123(1312), 77–80 (2010)

    PubMed  Google Scholar 

  159. J.C. Lo, M.M. Grumbach, Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 30(1), 207–229 (2001)

    Article  PubMed  CAS  Google Scholar 

  160. W. Hoepffner, E. Schulze, J. Bennek, E. Keller, H. Willgerodt, Pregnancies in patients with congenital adrenal hyperplasia with complete or almost complete impairment of 21-hydroxylase activity. Fertil. Steril. 81(5), 1314–1321 (2004). doi:10.1016/j.fertnstert.2003.10.024

    Article  PubMed  CAS  Google Scholar 

  161. H.F. Meyer-Bahlburg, C. Dolezal, S.W. Baker, M.I. New, Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch. Sex. Behav. 37(1), 85–99 (2008). doi:10.1007/s10508-007-9265-1

    Article  PubMed  Google Scholar 

  162. J. Helleday, G. Edman, E.M. Ritzen, B. Siwers, Personality characteristics and platelet MAO activity in women with congenital adrenal hyperplasia (CAH). Psychoneuroendocrinology 18(5–6), 343–354 (1993)

    Article  PubMed  CAS  Google Scholar 

  163. G.A. Mathews, B.A. Fane, G.S. Conway, C.G. Brook, M. Hines, Personality and congenital adrenal hyperplasia: possible effects of prenatal androgen exposure. Horm. Behav. 55(2), 285–291 (2009). doi:10.1016/j.yhbeh.2008.11.007

    Article  PubMed  CAS  Google Scholar 

  164. H. Kai, O. Nose, Y. Iida, J. Ono, T. Harada, H. Yabuuchi, Female pseudohermaphroditism caused by maternal congenital adrenal hyperplasia. J. Pediatr. 95(3), 418–420 (1979)

    Article  PubMed  CAS  Google Scholar 

  165. M. Dumic, N. Janjanin, J. Ille, R. Zunec, A. Spehar, G. Zlopasa, I. Francetic, M.I. New, Pregnancy outcomes in women with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Pediatr. Endocrinol. Metab. 18(9), 887–895 (2005)

    Article  PubMed  CAS  Google Scholar 

  166. T. Hirvikoski, A. Nordenstrom, T. Lindholm, F. Lindblad, E.M. Ritzen, A. Wedell, S. Lajic, Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab. 92(2), 542–548 (2007). doi:10.1210/jc.2006-1340

    Article  PubMed  CAS  Google Scholar 

  167. U. Nygren, M. Sodersten, H. Falhammar, M. Thoren, K. Hagenfeldt, A. Nordenskjold, Voice characteristics in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. (Oxf) 70(1), 18–25 (2009). doi:10.1111/j.1365-2265.2008.03347.x

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the excellent linguistic help from Sue Maxwell, RN, in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Falhammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falhammar, H., Thorén, M. Clinical outcomes in the management of congenital adrenal hyperplasia. Endocrine 41, 355–373 (2012). https://doi.org/10.1007/s12020-011-9591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9591-x

Keywords

Navigation