Log in

eIF2B Mutations Cause Mitochondrial Malfunction in Oligodendrocytes

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Vanishing white matter (VWM) disease (OMIM#306896) is an autosomal recessive neurodegenerative leukodystrophy caused by hypomorphic mutations in any of the five genes encoding the subunits of eukaryotic translation initiation factor 2B (eIF2B). The disease is manifested by loss of cerebral white matter and progressive deterioration upon exposure to environmental and physiological stressors. “Foamy” oligodendrocytes (OLG), increased numbers of oligodendrocytes precursor cells (OPC), and immature defective astrocytes are major neuropathological denominators. Our recent work using Eif2b5R132H/R132H mice uncovered a fundamental link between eIF2B and mitochondrial function. A decrease in oxidative phosphorylation capacity was observed in mutant astrocytes and fibroblasts. While an adaptive increase in mitochondria abundance corrects the phenotype of mutant fibroblasts, it is not sufficient to compensate for the high-energy demand of astrocytes, explaining their involvement in the disease. To date, astrocytes are marked as central for the disease while eIF2B-mutant OLG are currently assumed to lack a cellular phenotype on their own. Here we show a reduced capacity of eIF2B-mutant OPC isolated from Eif2b5R132H/R132H mice to conduct oxidative respiration despite the adaptive increase in their mitochondrial abundance. We also show their impaired ability to efficiently complete critical differentiation steps towards mature OLG. The concept that defective differentiation of eIF2B-mutant OPC could be a consequence of mitochondrial malfunction is in agreement with numerous studies indicating high dependency of differentiating OLG on accurate mitochondrial performance and ATP availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14(6), 724–738.

    Article  CAS  PubMed  Google Scholar 

  • Benardais, K., Kotsiari, A., Skuljec, J., Koutsoudaki, P. N., Gudi, V., Singh, V., et al. (2013). Cuprizone [bis(cyclohexylidenehydrazide)] is selectively toxic for mature oligodendrocytes. Neurotoxicity Research, 24(2), 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Bizzozero, O. A., Sanchez, P., & Tetzloff, S. U. (1999). Effect of ATP depletion on the palmitoylation of myelin proteolipid protein in young and adult rats. Journal of Neurochemistry, 72(6), 2610–2616.

    Article  CAS  PubMed  Google Scholar 

  • Buchet, D., & Baron-Van Evercooren, A. (2009). In search of human oligodendroglia for myelin repair. Neuroscience Letters, 456(3), 112–119.

    Article  CAS  PubMed  Google Scholar 

  • Bugiani, M., Boor, I., van Kollenburg, B., Postma, N., Polder, E., van Berkel, C., et al. (2011). Defective glial maturation in vanishing white matter disease. Journal of Neuropathology and Experimental Neurology, 70(1), 69–82.

    Article  PubMed  Google Scholar 

  • Bugiani, M., Postma, N., Polder, E., Dieleman, N., Scheffer, P. G., Sim, F. J., et al. (2013). Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease. Brain, 136(Pt 1), 209–222.

    Article  PubMed  Google Scholar 

  • Bugiani, M., Vuong, C., Breur, M., & van der Knaap, M. S. (2018). Vanishing white matter: A leukodystrophy due to astrocytic dysfunction. Brain Pathology, 28(3), 408–421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2015). MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research, 44, 1251–1257. https://doi.org/10.1093/nar/gkv1003.

    Article  CAS  Google Scholar 

  • Diaz-Castro, B., Pardal, R., Garcia-Flores, P., Sobrino, V., Duran, R., Piruat, J. I., et al. (2015). Resistance of glia-like central and peripheral neural stem cells to genetically induced mitochondrial dysfunction-differential effects on neurogenesis. EMBO Reports. 10.15252/embr.201540982.

  • Dietrich, J., Lacagnina, M., Gass, D., Richfield, E., Mayer-Proschel, M., Noble, M., et al. (2005). EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Nature Medicine, 11(3), 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Dooves, S., Bugiani, M., Postma, N. L., Polder, E., Land, N., Horan, S. T., et al. (2016). Astrocytes are central in the pathomechanisms of vanishing white matter. The Journal of clinical investigation, 126(4), 1512–1524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugas, J. C., Tai, Y. C., Speed, T. P., Ngai, J., & Barres, B. A. (2006). Functional genomic analysis of oligodendrocyte differentiation. Journal of Neuroscience, 26(43), 10967–10983.

    Article  CAS  PubMed  Google Scholar 

  • Elroy-Stein, O. (2017). Mitochondrial malfunction in vanishing white matter disease: A disease of the cytosolic translation machinery. Neural Regeneration Research, 12(10), 1610–1612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery, B., & Dugas, J. C. (2013). Purification of oligodendrocyte lineage cells from mouse cortices by immunopanning. Cold Spring Harbor Protocols, 2013(9), 854–868.

    Article  PubMed  Google Scholar 

  • Fogli, A., & Boespflug-Tanguy, O. (2006). The large spectrum of eIF2B-related diseases. Biochemical Society Transactions, 34(Pt 1), 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Francalanci, P., Eymard-Pierre, E., Dionisi-Vici, C., Boldrini, R., Piemonte, F., Virgili, R., et al. (2001). Fatal infantile leukodystrophy: A severe variant of CACH/VWM syndrome, allelic to chromosome 3q27. Neurology, 57(2), 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Gat-Viks, I., Geiger, T., Barbi, M., Raini, G., & Elroy-Stein, O. (2015). Proteomics-level analysis of myelin formation and regeneration in a mouse model for vanishing white matter disease. Journal of Neurochemistry, 134(3), 513–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geva, M., Cabilly, Y., Assaf, Y., Mindroul, N., Marom, L., Raini, G., et al. (2010). A mouse model for eukaryotic translation initiation factor 2B-leucodystrophy reveals abnormal development of brain white matter. Brain, 133(Pt 8), 2448–2461.

    Article  PubMed  Google Scholar 

  • Gobert, R. P., Joubert, L., Curchod, M. L., Salvat, C., Foucault, I., Jorand-Lebrun, C., et al. (2009). Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits. Molecular and Cellular Biology, 29(6), 1538–1553.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, E. M. C., van der Lei, H. D. W., Vermeulen, G., Gerver, J. A. M., Lourenco, C. M., Naidu, S., et al. (2018). Natural history of vanishing white matter. Annals of Neurology, 84(2), 274–288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiss, E. H., Kramer, M. P., Atanasov, A. G., Beres, H., Schachner, D., & Dirsch, V. M. (2014). Glycolytic switch in response to betulinic acid in non-cancer cells. PLoS ONE, 9(12), e115683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, H. T., & Turnbull, D. M. (2005). Nuclear genes and mitochondrial translation: A new class of genetic disease. Trends in Genetics, 21(6), 312–314.

    Article  CAS  PubMed  Google Scholar 

  • Kantor, L., Harding, H. P., Ron, D., Schiffmann, R., Kaneski, C. R., Kimball, S. R., et al. (2005). Heightened stress response in primary fibroblasts expressing mutant eIF2B genes from CACH/VWM leukodystrophy patients. Human Genetics, 118(1), 99–106.

    Article  PubMed  Google Scholar 

  • Kerkhofs, M., Bittremieux, M., Morciano, G., Giorgi, C., Pinton, P., Parys, J. B., et al. (2018). Emerging molecular mechanisms in chemotherapy: Ca(2 +) signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death & Disease, 9(3), 334.

    Article  CAS  Google Scholar 

  • Leegwater, P. A., Vermeulen, G., Konst, A. A., Naidu, S., Mulders, J., Visser, A., et al. (2001). Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nature Genetics, 29(4), 383–388.

    Article  CAS  PubMed  Google Scholar 

  • Leferink, P. S., Breeuwsma, N., Bugiani, M., van der Knaap, M. S., & Heine, V. M. (2018). Affected astrocytes in the spinal cord of the leukodystrophy vanishing white matter. Glia, 66(4), 862–873.

    Article  PubMed  Google Scholar 

  • Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445(7124), 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y., Pang, X., Huang, G., Jamison, S., Fang, J., Harding, H. P., et al. (2014). Impaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice. Journal of Neuroscience, 34(36), 12182–12191.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., & Casaccia, P. (2010). Epigenetic regulation of oligodendrocyte identity. Trends in Neurosciences, 33(4), 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marom, L., Ulitsky, I., Cabilly, Y., Shamir, R., & Elroy-Stein, O. (2011). A point mutation in translation initiation factor eIF2B leads to function–and time-specific changes in brain gene expression. PLoS ONE, 6(10), e26992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavitt, G. D. (2018). Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. Wiley Interdisciplinary Reviews: RNA, 9(6), e1491.

    Article  CAS  PubMed  Google Scholar 

  • Quiros, P. M., Mottis, A., & Auwerx, J. (2016). Mitonuclear communication in homeostasis and stress. Nature Reviews Molecular Cell Biology, 17(4), 213–226.

    Article  CAS  PubMed  Google Scholar 

  • Raini, G., Sharet, R., Herrero, M., Atzmon, A., Shenoy, A., Geiger, T., et al. (2017). Mutant eIF2B leads to impaired mitochondrial oxidative phosphorylation in vanishing white matter disease. Journal of Neurochemistry, 141(5), 694–707.

    Article  CAS  PubMed  Google Scholar 

  • Rinholm, J. E., Hamilton, N. B., Kessaris, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. (2011). Regulation of oligodendrocyte development and myelination by glucose and lactate. Journal of Neuroscience, 31(2), 538–548.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, D., Gelot, A., Della Gaspera, B., Robain, O., Ponsot, G., Sarlieve, L. L., et al. (1999). Increased density of oligodendrocytes in childhood ataxia with diffuse central hypomyelination (CACH) syndrome: Neuropathological and biochemical study of two cases. Acta Neuropathologica, 97(5), 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Abarca, L. I., Tabernero, A., & Medina, J. M. (2001). Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia, 36(3), 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann, R., Moller, J. R., Trapp, B. D., Shih, H. H., Farrer, R. G., Katz, D. A., et al. (1994). Childhood ataxia with diffuse central nervous system hypomyelination. Annals of Neurology, 35(3), 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld, R., Wong, A., Silva, J., Li, M., Itoh, A., Horiuchi, M., et al. (2010). Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion, 10(2), 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Taanman, J. W. (1999). The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410(2), 103–123.

    Article  CAS  PubMed  Google Scholar 

  • Vafai, S. B., & Mootha, V. K. (2012). Mitochondrial disorders as windows into an ancient organelle. Nature, 491(7424), 374–383.

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap, M. S., Leegwater, P. A., Konst, A. A., Visser, A., Naidu, S., Oudejans, C. B., et al. (2002). Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Annals of Neurology, 51(2), 264–270.

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap, M. S., Pronk, J. C., & Scheper, G. C. (2006). Vanishing white matter disease. The Lancet Neurology, 5(5), 413–423.

    Article  PubMed  Google Scholar 

  • van der Voorn, J. P., van Kollenburg, B., Bertrand, G., Van Haren, K., Scheper, G. C., Powers, J. M., et al. (2005). The unfolded protein response in vanishing white matter disease. Journal of Neuropathology and Experimental Neurology, 64(9), 770–775.

    Article  PubMed  Google Scholar 

  • Van Haren, K., van der Voorn, J. P., Peterson, D. R., van der Knaap, M. S., & Powers, J. M. (2004). The life and death of oligodendrocytes in vanishing white matter disease. Journal of Neuropathology and Experimental Neurology, 63(6), 618–630.

    Article  PubMed  Google Scholar 

  • Wong, K., Armstrong, R. C., Gyure, K. A., Morrison, A. L., Rodriguez, D., Matalon, R., et al. (2000). Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central nervous system hypomyelination syndrome. Acta Neuropathologica, 100(6), 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Wong, Y. L., LeBon, L., Basso, A. M., Kohlhaas, K. L., Nikkel, A. L., Robb, H. M., et al. (2019). eIF2B activator prevents neurological defects caused by a chronic integrated stress response. Elife. https://doi.org/10.7554/elife.42940.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the U.S.-Israel Binational Science Foundation (BSF) Grant #2009159 and by the VWM Saxby project grant to OES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orna Elroy-Stein.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of Tel Aviv University Animal Care Committee according to national guidelines (permit #04-17-022). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero, M., Mandelboum, S. & Elroy-Stein, O. eIF2B Mutations Cause Mitochondrial Malfunction in Oligodendrocytes. Neuromol Med 21, 303–313 (2019). https://doi.org/10.1007/s12017-019-08551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08551-9

Keywords

Navigation