Log in

Diet-Derived Advanced Glycation End Products (dAGEs) Induce Proinflammatory Cytokine Expression in Cardiac and Renal Tissues of Experimental Mice: Protective Effect of Curcumin

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The beneficial effect of curcumin (CU) on dietary AGEs (dAGEs) involves blocking the overexpression of proinflammatory cytokine genes in the heart and kidney tissues of experimental mice. The animals were divided into six groups (n = 6/group) and were fed a heat-exposed diet (dAGEs) with or without CU for 6 months. Their blood pressure (BP) was monitored by a computerized tail-cuff BP-monitoring system. The mRNA and protein expression levels of proinflammatory genes were analyzed by RT-PCR and western blot, respectively. A marked increase in BP (108 ± 12 mmHg vs 149 ± 15 mmHg) accompanied by a marked increase in the heart and kidney weight ratio was noted in the dAGE-fed mice. Furthermore, the plasma levels of proinflammatory molecules (C5a, ICAM-1, IL-6, MCP-1, IL-1β and TNF-α) were found to be elevated (3-fold) in dAGE-fed mice. mRNA expression analysis revealed a significant increase in the expression levels of inflammatory markers (Cox-2, iNOS, and NF-κB) (3-fold) in cardiac and renal tissues of dAGE-fed mice. Moreover, increased expression of RAGE and downregulation of AGER-1 (p < 0.001) were noticed in the heart and kidney tissues of dAGE-fed mice. Interestingly, the dAGE-induced proinflammatory genes and inflammatory responses were neutralized upon cotreatment with CU. The present study demonstrates that dietary supplementation with CU has the ability to neutralize dAGE-induced adverse effects and alleviate proinflammatory gene expression in the heart and kidney tissues of experimental mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vlassara, H., Cai, W., Tripp, E., Pyzik, R., Yee, K., Goldberg, L., et al. (2016). Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: A randomised controlled trial. Diabetologia, 59, 2181–2192.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Crisóstomo, J., Matafome, P., Santos-Silva, D., Rodrigues, L., Sena, C. M., et al. (2013). Methylglyoxal chronic administration promotes diabetes-like cardiac ischaemia disease in Wistar normal rats. Nutrition, Metabolism and Cardiovascular Diseases, 23, 1223–1230.

    PubMed  Google Scholar 

  3. Abe, Y., Yagi, M., Uwaya, A., Isami, F., & Yonei, Y. (2016). Effect of iridoid (containing plants) on AGE formation and degradation. Glycative Stress Res, 3, 56–64.

    Google Scholar 

  4. Sveen, K. A., Dahl-Jørgensen, K., Stensaeth, K. H., Angel, K., Seljeflot, I., et al. (2015). Glucosepane and oxidative markers in skin collagen correlate with intima media thickness and arterial stiffness in long-term type 1 diabetes. Journal of Diabetes and its Complications, 29, 407–412.

    PubMed  Google Scholar 

  5. Qais, F. A., Alam, M. M., Naseem, I., & Ahmad, I. (2016). Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: An in vitro interaction and molecular modelling study. RSC Advances, 6, 65322–65337.

    Google Scholar 

  6. Madsen-Bouterse, S. A., & Kowluru, R. A. (2008). Oxidative stress and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives. Reviews in Endocrine and Metabolic Disorders, 9(4), 315–327.

    CAS  PubMed  Google Scholar 

  7. Tobon-Velasco, J., Cuevas, E., & Torres-Ramos, M. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 13, 1615–1626.

    CAS  Google Scholar 

  8. Vlassara, H., Cai, W., Goodman, S., Pyzik, R., Yong, A., Chen, X., Zhu, L., Neade, T., Beeri, M., Silverman, J. M., & Ferrucci, L. (2009). Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: Role of the anti -inflammatory AGE receptor-1. The Journal of Clinical Endocrinology & Metabolism, 94, 4483–4491.

    CAS  Google Scholar 

  9. Nowotny, K., Schröter, D., Schreiner, M., & Grune, T. (2018). Dietary advanced glycation end products and their relevance for human health. Ageing Research Reviews, 47, 55–66.

    CAS  PubMed  Google Scholar 

  10. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., & Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association., 104, 1287–1291.

    CAS  PubMed  Google Scholar 

  11. Newens, K. J., & Walton, J. (2016). A review of sugar consumption from nationally representative dietary surveys across the world. Journal of Human Nutrition and Dietetics, 29, 225–240.

    CAS  PubMed  Google Scholar 

  12. Sharma, C., Kaur, A., Thind, S. S., Singh, B., & Raina, S. (2015). Advanced glycation end-products (AGEs): An emerging concern for processed food industries. Journal of Food Science and Technology, 52, 7561–7576.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Clarke, R. E., Dordevic, A. L., Tan, S. M., Ryan, L., & Coughlan, M. T. (2016). Dietary advanced glycation end products and risk factors for chronic disease: A systematic review of randomised controlled trials. Nutrients, 8, 125.

    PubMed  PubMed Central  Google Scholar 

  14. Delgado-Andrade, C., & Fogliano, V. (2018). Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: Physiological consequences of their intake. Annual Review of Food Science and Technology, 9, 271–291.

    CAS  PubMed  Google Scholar 

  15. Di Pino, A., Currenti, W., Urbano, F., Scicali, R., Piro, S., Purrello, F., & Rabuazzo, A. M. (2017). High intake of dietary advanced glycation end-products is associated with increased arterial stiffness and inflammation in subjects with type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 27, 978–984.

    PubMed  Google Scholar 

  16. **e, J., Méndez, J. D., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling, 25, 2185–2197.

    CAS  PubMed  Google Scholar 

  17. Bolton, W. K., Cattran, D. C., Williams, M. E., Adler, S. G., Appel, G. B., Cartwright, K., et al. (2004). Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. American Journal of Nephrology, 24, 32–40.

    CAS  PubMed  Google Scholar 

  18. Kapakos, G., Youreva, V., & Srivastava, A. K. (2012). Cardiovascular protection by curcumin: Molecular aspects.

  19. Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: From bedside to bench and back. Biotechnology Advances., 32, 1053–1064.

    CAS  PubMed  Google Scholar 

  20. Sandur, S. K., Ichikawa, H., Pandey, M. K., Kunnumakkara, A. B., Sung, B., Sethi, G., et al. (2007). Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radical Biology and Medicine, 43, 568–580.

    CAS  PubMed  Google Scholar 

  21. Zong, H., Wang, F., Fan, Q. X., & Wang, L. X. (2012). Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Molecular Biology Reports., 39, 4803–4808.

    CAS  PubMed  Google Scholar 

  22. Hu, T. Y., Liu, C. L., Chyau, C. C., & Hu, M. L. (2012). Trap** of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells. Journal of Agricultural and Food Chemistry, 60, 8190–8196.

    CAS  PubMed  Google Scholar 

  23. Hu, T. Y., Liu, C. L., Chen, J. Y., & Hu, M. L. (2013). Curcumin ameliorates methylglyoxal-induced alterations of cellular morphology and hyperpermeability in human umbilical vein endothelial cells. Journal of Functional Foods, 5, 745–754.

    CAS  Google Scholar 

  24. Rajan, B. S., Manivasagam, S., Dhanusu, S., Chandrasekar, N., Krishna, K., Kalaiarasu, L. P., et al. (2018). Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: Protective role of curcumin and gallic acid. Food and Chemical Toxicology, 114, 237–245.

    Google Scholar 

  25. Palombo, R., Gertler, A., & Saguy, I. (1984). A simplified method for determination of browning in dairy powders. Journal of Food Science, 49(6), 1609–1609.

    CAS  Google Scholar 

  26. Halatchev, I. G., Ellacott, K. L., Fan, W., & Cone, R. D. (2004). Peptide YY3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology, 145(6), 2585–2590.

    CAS  PubMed  Google Scholar 

  27. Johnson, M. S., Thomson, S. C., & Speakman, J. R. (2001). Limits to sustained energy intake: I. Lactation in the laboratory mouse MUS MUSCULUS. Journal of Experimental Biology, 204, 1925–1935.

    CAS  Google Scholar 

  28. Ling, Q. L., Mohite, A. J., Murdoch, E., Akasaka, H., Li, Q. Y., So, S. P., et al. (2018). Creating a mouse model resistant to induced ischemic stroke and cardiovascular damage. Scientific Reports, 8(1), 1653.

    PubMed  PubMed Central  Google Scholar 

  29. Ushijima, T., Fujimoto, N., Matsuyama, S., Kan-o, M., Kiyonari, H., Shioi, G., ... Sumimoto, H. (2018). The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice. Journal of Biological Chemistry293(1), 148–162.

  30. Frantz, S., Fraccarollo, D., Wagner, H., Behr, T. M., Jung, P., Angermann, C. E., Ertl, G., & Bauersachs, J. (2003). Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovascular Research., 57(3), 749–756.

    CAS  PubMed  Google Scholar 

  31. Maiuolo, J., Maretta, A., Gliozzi, M., Musolino, V., Carresi, C., Bosco, F., ... Nucera, S. (2018). Ethanol-induced cardiomyocyte toxicity implicit autophagy and NFkB transcription factor. Pharmacological Research133, 141–150.

  32. Joseph, D. R. (1908). The ratio between the heart-weight and body-weight in various animals. The Journal of Experimental Medicine, 10, 521.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tighe, P. J., Ryder, R. R., Todd, I., & Fairclough, L. C. (2015). ELISA in the multiplex era: Potentials and pitfalls. PROTEOMICS–Clinical Applications , 9, 406–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110, 911–916.

    PubMed  PubMed Central  Google Scholar 

  35. Palioura, E., Palimeri, S., Piperi, C., Sakellariou, S., Kandaraki, E., Sergentanis, T., et al. (2015). Impact of androgen and dietary advanced glycation end products on female rat liver. Cellular Physiology and Biochemistry, 37, 1134–1146.

    CAS  PubMed  Google Scholar 

  36. Cai, W., Ramdas, M., Zhu, L., Chen, X., Striker, G. E., & Vlassara, H. (2012). Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proceedings of the National Academy of Sciences, 109, 15888–15893.

    CAS  Google Scholar 

  37. Fabre, N. T., Thieme, K., Silva, K. S., Catanozi, S., Cavaleiro, A. M., Pinto, D. A., Jr., et al. (2017). Hormetic modulation of hepatic insulin sensitivity by advanced glycation end products. Molecular and Cellular Endocrinology, 447, 116–124.

    CAS  PubMed  Google Scholar 

  38. Um, M. Y., Hwang, K. H., Ahn, J., & Ha, T. Y. (2013). Curcumin attenuates diet-induced hepatic steatosis by activating AMPactivated protein kinase. Basic & Clinical Pharmacology & Toxicology, 113, 152–157.

    CAS  Google Scholar 

  39. Maithili Karpaga Selvi, N., Sridhar, M. G., Swaminathan, R. P., & Sripradha, R. (2015). Curcumin attenuates oxidative stress and activation of redox-sensitive kinases in high fructose-and high-fat-fed male Wistar rats. Scientia Pharmaceutica, 83, 159–175.

    PubMed  Google Scholar 

  40. Di Pierro, F., Bressan, A., Ranaldi, D., Rapacioli, G., Giacomelli, L., & Bertuccioli, A. (2015). Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: Preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. European Review for Medical and Pharmacological Sciences, 19, 4195–4202.

    PubMed  Google Scholar 

  41. Chainani-Wu, N. (2003). Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). The Journal of Alternative & Complementary Medicine., 9, 161–168.

    Google Scholar 

  42. Shehzad, A., Ha, T., Subhan, F., & Lee, Y. S. (2011). New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. European Journal of Nutrition., 50, 151–161.

    CAS  PubMed  Google Scholar 

  43. Weisberg, S. P., Leibel, R., & Tortoriello, D. V. (2008). Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology, 149, 3549–3558.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mirmiran, P., Yousefi, R., Mottaghi, A., & Azizi, F. (2018). Advanced glycation end products and risk of hypertension in Iranian adults: Tehran lipid and glucose study. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 23, 43.

    Google Scholar 

  45. Wang, X., Desai, K., Clausen, J. T., & Wu, L. (2004). Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney International, 66, 2315–2321.

    CAS  PubMed  Google Scholar 

  46. Umadevi, S., Gopi, V., & Elangovan, V. (2014). Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chemico-Biological Interactions, 208, 28–36.

    CAS  PubMed  Google Scholar 

  47. Yousuf, M. J., & Vellaichamy, E. (2015). Protective activity of gallic acid against glyoxal-induced renal fibrosis in experimental rats. Toxicology Reports, 2, 1246–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Akazawa, N., Choi, Y., Miyaki, A., Tanabe, Y., Sugawara, J., Ajisaka, R., & Maeda, S. (2012). Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutrition Research, 32, 795–799.

    CAS  PubMed  Google Scholar 

  49. Morimoto, T., Sunagawa, Y., Kawamura, T., Takaya, T., Wada, H., Nagasawa, A., Komeda, M., et al. (2008). The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. The Journal of Clinical Investigation., 118, 868–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, H., Liu, H., Chen, Y., & Zhang, Y. (2018). The curcumin-induced vasorelaxation in rat superior mesenteric arteries. Annals of Vascular Surgery, 48, 233–240.

    PubMed  Google Scholar 

  51. Sajithlal, G. B., Chithra, P., & Chandrakasan, G. (1998). Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochemical Pharmacology, 56, 1607–1614.

    CAS  PubMed  Google Scholar 

  52. Stirban, A., & Tschöpe, D. (2015). Vascular effects of dietary advanced glycation end products. International Journal of Endocrinology. https://doi.org/10.1155/2015/836498

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grunwald, S., Krause, R., Bruch, M., Henle, T., & Brandsch, M. (2006). Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. British Journal of Nutrition, 95, 1221–1228.

    CAS  Google Scholar 

  54. Hellwig, M., Geissler, S., Matthes, R., Peto, A., Silow, C., Brandsch, M., & Henle, T. (2011). Transport of free and peptide-bound glycated amino acids: Synthesis, transepithelial flux at caco-2 cell monolayers, and interaction with apical membrane transport proteins. ChemBioChem, 12, 1270–1279.

    CAS  PubMed  Google Scholar 

  55. Koschinsky, T., He, C. J., Mitsuhashi, T., Bucala, R., Liu, C., Buenting, C., ... Vlassara, H. (1997). Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proceedings of the National Academy of Sciences94, 6474–6479.

  56. Roncero-Ramos, I., Delgado-Andrade, C., Tessier, F. J., Niquet-Léridon, C., Strauch, C., Monnier, V. M., et al. (2013). Metabolic transit of Nε-carboxymethyl-lysine after consumption of AGEs from bread crust. Food & Function, 4, 1032–1039.

    CAS  Google Scholar 

  57. Uribarri, J., Cai, W., Pyzik, R., Goodman, S., Chen, X., Zhu, L., ... Vlassara, H. (2014). Suppression of native defense mechanisms, SIRT1 and PPARγ, by dietary glycoxidants precedes disease in adult humans; relevance to lifestyle-engendered chronic diseases. Amino Acids46, 301–309.

  58. Stirban, A., Negrean, M., Götting, C., Stratmann, B., Gawlowski, T., Mueller-Roesel, M., ... Tschoepe, D. (2008). Leptin decreases postprandially in people with type 2 diabetes, an effect reduced by the cooking method. Hormone and Metabolic Research40, 896–900.

  59. Scheijen, J. L., Hanssen, N. M., van Greevenbroek, M. M., Van der Kallen, C. J., Feskens, E. J., Stehouwer, C. D., et al. (2018). Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clinical Nutrition, 37, 919–925.

    CAS  PubMed  Google Scholar 

  60. Foerster, A., & Henle, T. (2003). Glycation in food and metabolic transit of dietary AGEs (advanced glycation end-products): Studies on the urinary excretion of pyrraline. Biochemical Society Transactions, 31, 1383–1385.

    CAS  PubMed  Google Scholar 

  61. Yu, W., Wu, J., Cai, F., **ang, J., Zha, W., Fan, D., et al. (2012). Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS ONE, 7, e52013.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Seo, K. I., Choi, M. S., Jung, U. J., Kim, H. J., Yeo, J., Jeon, S. M., & Lee, M. K. (2008). Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Molecular Nutrition & Food Research., 52, 995–1004.

    CAS  Google Scholar 

  63. Derk, J., MacLean, M., Juranek, J., & Schmidt, A. M. (2018). The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. Journal of Alzheimer’s disease & Parkinsonism. https://doi.org/10.4172/2161-0460.1000421

    Article  Google Scholar 

  64. Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2008). Mechanisms of disease: Advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Reviews Endocrinology, 4, 285.

    CAS  Google Scholar 

  65. Yamagishi, S. I., Ueda, S., & Okuda, S. (2007). Food-derived advanced glycation end products (AGEs): A novel therapeutic target for various disorders. Current Pharmaceutical Design., 13, 2832–2836.

    CAS  PubMed  Google Scholar 

  66. Soetikno, V., Sari, F. R., Veeraveedu, P. T., Thandavarayan, R. A., Harima, M., Sukumaran, V., et al. (2011). Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutrition & Metabolism, 8, 35.

    CAS  Google Scholar 

  67. Farhangkhoee, H., Khan, Z. A., Chen, S., & Chakrabarti, S. (2006). Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutrition & Metabolism., 3, 27.

    Google Scholar 

  68. Vlassara, H., Cai, W., Goodman, S., Pyzik, R., Yong, A., Chen, X., et al. (2009). Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: Role of the anti-inflammatory AGE receptor-1. The Journal of Clinical Endocrinology & Metabolism, 94, 4483–4491.

    CAS  Google Scholar 

  69. Lin, J., Tang, Y., Kang, Q., Feng, Y., & Chen, A. (2012). Curcumin inhibits gene expression of receptor for advanced glycation end products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. British Journal of Pharmacology, 166, 2212–2227.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Manetti, A. C., Maiese, A., Paolo, M. D., De Matteis, A., La Russa, R., Turillazzi, E., ... Fineschi, V. (2021). MicroRNAs and sepsis-induced cardiac dysfunction: A systematic review. International Journal of Molecular Sciences22(1), 321.

  71. Sanz, A. B., Sanchez-Niño, M. D., Ramos, A. M., Moreno, J. A., Santamaria, B., Ruiz-Ortega, M., ... Ortiz, A. (2010). NF-κB in renal inflammation. Journal of the American Society of Nephrology21(8), 1254–1262.

  72. **ang, M., Wang, J., Zhang, Y., Ling, J., & Xu, X. (2012). Attenuation of aortic injury by ursolic acid through RAGE-Nox-NFκB pathway in streptozocin-induced diabetic rats. Archives of Pharmacal Research, 35, 877–886.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. EV acknowledges the Department of Biotechnology (DBT), India, for financial support in the form of a major research project (D.O.BT/PR6259/FNS/20/587/2012). BS thanks the Department of Biotechnology (DBT) and the Indian Council of Medical Research (ICMR) for research fellowships. KK thanks the Indian Council of Medical Research (ICMR) for the senior research fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elangovan Vellaichamy.

Ethics declarations

Conflict of interest

We declare that there are no competing financial interests for this work.

Ethical Approval

All applicable CPCSEA-approved guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: Mitzi C. Glover.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12012_2021_9697_MOESM1_ESM.tif

Supplementary Fig. 1 (A-C) shows the texture, browning index and N ε-CML levels in the basal and heat-exposed AIN-76 diets (72°C and 90°C). Values are expressed as the mean ± SEM (n = 3). **p < 0.05, AIN-76 basal diet vs AIN-76 heat-exposed diet 72°C, *** p<0.01, AIN-76 basal diet vs AIN-76 heat-exposed diet 90°C. Supplementary file1 (TIF 32267 KB)

12012_2021_9697_MOESM2_ESM.tif

Supplementary Fig. 2 (A-D) shows the mRNA expression levels of hypertrophic marker genes in the heart and kidney tissue of the control and experimental groups of mice. BD - basal diet, HED – heat-exposed diet, N ε-CML – N ε-CML mixed basal diet, HED + CU - HED diet cotreated with curcumin, N ε-CML + CU – N ε-CML mixed diet cotreated with curcumin and BD+CU – basal diet alone treated with curcumin. The data are represented as box and whisker plots; the box represents the 1st and 3rd quartiles, and the heavy bar represents the median value. a p < 0.001 and b p<0.01, BD-fed mice vs HED- and N ε-CML mixed basal diet-fed mice, respectively; a*p<0.05, HED vs HED + CU cotreated mice, b*p<0.05, N ε-CML vs N ε-CML +CU cotreated mice; ns - Nonsignificant changes in BD + CU-alone treated vs control mice. Supplementary file2 (TIF 22119 KB)

Supplementary file3 (DOCX 102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowndhar Rajan, B., Krishnan, K. & Vellaichamy, E. Diet-Derived Advanced Glycation End Products (dAGEs) Induce Proinflammatory Cytokine Expression in Cardiac and Renal Tissues of Experimental Mice: Protective Effect of Curcumin. Cardiovasc Toxicol 22, 35–51 (2022). https://doi.org/10.1007/s12012-021-09697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09697-4

Keywords

Navigation