Log in

Wnt/β-Catenin Antagonist Pyrvinium Exerts Cardioprotective Effects in Polymicrobial Sepsis Model by Attenuating Calcium Dyshomeostasis and Mitochondrial Dysfunction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Calcium dysregulation and mitochondrial dysfunction are key elements in the development of sepsis-induced cardiac dysfunction. Evidences have suggested that inhibition of Wnt/β-Catenin signalling prevents cardiac dysfunction and remodelling in surgical, hypertension and pressure overload models. The present study investigated the effects of Wnt/β-Catenin inhibitor on calcium overload and mitochondrial dysfunction in rat sepsis model of cardiomyopathy. Induction of sepsis by cecal ligation puncture (CLP) resulted in the up-regulation of cardiac β-catenin transcriptional levels and cardiac dysfunction depicted by increased serum lactate dehydrogenase, CK-MB levels reduced maximum (dp/dt max.) and minimum developed pressure (dp/dt min.), increased LVEsDP and relaxation constant tau values. Moreover, oxidative and inflammatory stress, immune cell infiltration, increased myeloperoxidase activity, enhanced caspase-3 activity and fibronectin protein levels were observed in septic rat’s heart. Also, septic rat’s heart displayed mitochondrial dysfunction due to mPTP opening, increased calcium up-regulation in left ventricular apex tissues and whole heart, increased collagen staining, necrosis and structural damage. Pre-treatment with Wnt/β-Catenin antagonist attenuated sepsis-induced serum and tissue biochemical changes, cardiac dysfunction and structural alterations by inhibiting mitochondrial mPTP opening and restricting calcium overloading in cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

GSH:

Glutathione

IL-17:

Interleukin 17

IL-1β:

Interleukin 1β

MDA:

Malondialdehyde

MPO:

Myeloperoxidase

mPTP:

Mitochondrial permeability transition pore

TNF-α:

Tumour necrosis factor α

LVEDP:

Left ventricle end-diastolic pressure

dp/dt max:

Rate of left ventricular maximum developed pressure

dp/dt min:

Rate of minimum developed pressure

References

  1. Kumar, A., Thota, V., Dee, L., Olson, J., Uretz, E., & Parrillo, J. E. (1996). Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. Journal of Experimental Medicine, 183(3), 949–958.

    CAS  Google Scholar 

  2. Natanson, C. H. A. R. L. E. S., Eichenholz, P. W., Danner, R. L., Eichacker, P. Q., Hoffman, W. D., Kuo, G. C., Banks, S. M., MacVittie, T. J., & Parrillo, J. E. (1989). Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. The Journal of Experimental Medicine, 169(3), 823–832.

    CAS  PubMed  Google Scholar 

  3. Stein, B., Frank, P., Schmitz, W., Scholz, H., & Thoenes, M. (1996). Endotoxin and cytokines induce direct cardiodepressive effects in mammalian cardiomyocytes via induction of nitric oxide synthase. Journal of Molecular and Cellular Cardiology, 28(8), 1631–1639.

    CAS  PubMed  Google Scholar 

  4. Zhong, J., Hwang, T. C., Adams, H. R., & Rubin, L. J. (1997). Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. American Journal of Physiology-Heart and Circulatory Physiology, 273(5), H2312–H2324.

    CAS  Google Scholar 

  5. Goldhaber, J. I., Kim, K. H., Natterson, P. D., Lawrence, T. R. A. C. Y., Yang, P. H. I. L., & Weiss, J. N. (1996). Effects of TNF-alpha on [Ca2+] i and contractility in isolated adult rabbit ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 271(4), H1449–H1455.

    CAS  Google Scholar 

  6. Dibb, K. M., Graham, H. K., Venetucci, L. A., Eisner, D. A., & Trafford, A. W. (2007). Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium, 42(4–5), 503–512.

    CAS  PubMed  Google Scholar 

  7. Goll, D. E., Thompson, V. F., Li, H., Wei, W. E. I., & Cong, J. (2003). The calpain system. Physiological reviews, 83, 731–801.

  8. Whitehead, N. P., Yeung, E. W., & Allen, D. G. (2005). Muscle damage in mdx (dystrophic) mice: The role of calcium and reactive oxygen species. In Proceedings of the Australian Physiological Society (Vol. 36, pp. 111–117).

  9. Celes, M. R., Malvestio, L. M., Suadicani, S. O., Prado, C. M., Figueiredo, M. J., Campos, E. C., Freitas, A. C., Spray, D. C., Tanowitz, H. B., da Silva, J. S., & Rossi, M. A. (2013). Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. PLoS One, 8(7), e68809.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shanmuganathan, S., Hausenloy, D. J., Duchen, M. R., & Yellon, D. M. (2005). Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. American Journal of Physiology-Heart and Circulatory Physiology, 289(1), H237–H242.

    CAS  PubMed  Google Scholar 

  11. Halestrap, A. P. (2006). Calcium, mitochondria and reperfusion injury: A pore way to die. Biochemical Society Transactions, 34(2), 232–237. https://doi.org/10.1042/BST0340232.

    Article  CAS  PubMed  Google Scholar 

  12. Deb, A. (2014). Cell–cell interaction in the heart via Wnt/β-catenin pathway after cardiac injury. Cardiovascular Research, 102(2), 214–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Clevers, H., & Nusse, R. (2012). Wnt/β-catenin signaling and disease. Cell, 149(6), 1192–1205.

    CAS  PubMed  Google Scholar 

  14. Zheng, Q., Chen, P., Xu, Z., Li, F., & Yi, X. P. (2013). Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. Journal of Molecular Histology, 44(5), 565–573.

    CAS  PubMed  Google Scholar 

  15. Gitau, S. C., Li, X., Zhao, D., Guo, Z., Liang, H., Qian, M., Lv, L., Li, T., Xu, B., Wang, Z., & Zhang, Y. (2015). Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Frontiers of Medicine, 9(4), 444–456.

    PubMed  Google Scholar 

  16. Malekar, P., Hagenmueller, M., Anyanwu, A., Buss, S., Streit, M. R., Weiss, C. S., Wolf, D., Riffel, J., Bauer, A., Katus, H. A., & Hardt, S. E. (2010). Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension, 55(4), 939–945.

    CAS  PubMed  Google Scholar 

  17. van de Schans, V. A., van den Borne, S. W., Strzelecka, A. E., Janssen, B. J., van der Velden, J. L., Langen, R. C., Wynshaw-Boris, A., Smits, J. F., & Blankesteijn, W. M. (2007). Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension, 49(3), 473–480.

    PubMed  Google Scholar 

  18. Zhao, Y., Wang, C., Wang, C., Hong, X., Miao, J., Liao, Y., Zhou, L., & Liu, Y. (2018). An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Scientific Reports, 8(1), 1–14.

    Google Scholar 

  19. Cuevas, C. A., Tapia-Rojas, C., Cespedes, C., Inestrosa, N. C., & Vio, C. P. (2015). β-Catenin-dependent signaling pathway contributes to renal fibrosis in hypertensive rats. BioMed Research International, 2015, 13. https://doi.org/10.1155/2015/726012.

    Article  CAS  Google Scholar 

  20. Yang, C., Wu, K., Li, S. H., & You, Q. (2013). Protective effect of curcumin against cardiac dysfunction in sepsis rats. Pharmaceutical Biology, 51(4), 482–487.

    CAS  PubMed  Google Scholar 

  21. Singh, K., Sharma, K., Singh, M., & Sharma, P. L. (2012). Possible mechanism of the cardio-renal protective effects of AVE-0991, a non-peptide Mas-receptor agonist, in diabetic rats. Journal of the Renin-Angiotensin-Aldosterone System, 13(3), 334–340.

    PubMed  Google Scholar 

  22. Aebi, H. (1974). Catalase. In: Bergmeyer, H.U., (Ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press Inc., Weinheim/NewYork, (pp. 673–680). https://doi.org/10.1016/B978-0-12-091302-2.50032-3

  23. Boyne, A. F., & Ellman, G. L. (1972). A methodology for analysis of tissue sulfhydryl components. Analytical Biochemistry, 46(2), 639–653.

    CAS  PubMed  Google Scholar 

  24. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    CAS  PubMed  Google Scholar 

  25. Barone, F. C., Hillegass, L. M., Price, W. J., White, R. F., Lee, E. V., Feuerstein, G. Z., Sarau, H. M., Clark, R. K., & Griswold, D. E. (1991). Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: Myeloperoxidase activity assay and histologic verification. Journal of Neuroscience Research, 29(3), 336–345.

    CAS  PubMed  Google Scholar 

  26. Li, D., Liu, M., Tao, T. Q., Song, D. D., Liu, X. H., & Shi, D. Z. (2014). Panax quinquefolium saponin attenuates cardiomyocyte apoptosis and opening of the mitochondrial permeability transition pore in a rat model of ischemia/reperfusion. Cellular Physiology and Biochemistry, 34(4), 1413–1426.

    CAS  PubMed  Google Scholar 

  27. Shahbaz, A. U., Zhao, T., Zhao, W., Johnson, P. L., Ahokas, R. A., Bhattacharya, S. K., Sun, Y., Gerling, I. C., & Weber, K. T. (2011). Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state. American Journal of Physiology-Heart and Circulatory Physiology, 300(2), H636–H644.

    CAS  PubMed  Google Scholar 

  28. Bhattacharya, S. K., Goodwin, T. G., & Crawford, A. J. (1984). Submicro determination of copper and zinc in needle biopsy-sized cardiac and skeletal muscles by atomic absorption spectroscopy using stoichiometric air-acetylene flame. Analytical Letters, 17(14), 1567–1591.

    CAS  Google Scholar 

  29. Kaur, G., & Krishan, P. (2020). Serotonin 5HT2A receptor antagonism mediated anti-inflammatory and anti-fibrotic effect in adriamycin-induced CKD in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(7), 1269–1279.

    CAS  PubMed  Google Scholar 

  30. Lichtenauer, M., Schreiber, C., Jung, C., Beer, L., Mangold, A., Gyöngyösi, M., Podesser, B. K., & Ankersmit, H. J. (2014). Myocardial infarct size measurement using geometric angle calculation. European Journal of Clinical Investigation, 44(2), 160–167.

    PubMed  Google Scholar 

  31. Li, L., Peng, X., Guo, L., Zhao, Y., & Cheng, Q. (2020). Sepsis causes heart injury through endoplasmic reticulum stress-mediated apoptosis signaling pathway. International Journal of Clinical and Experimental Pathology, 13(5), 964.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X., Hu, W., Feng, F., Xu, J., & Wu, F. (2016). Apelin-13 protects against myocardial infarction-induced myocardial fibrosis. Molecular Medicine Reports, 13(6), 5262–5268.

    CAS  PubMed  Google Scholar 

  33. Gu, Y., Bai, Y., Wu, J., Hu, L., & Gao, B. (2010). Establishment and characterization of an experimental model of coronary thrombotic microembolism in rats. The American Journal of Pathology, 177(3), 1122–1130.

    PubMed  PubMed Central  Google Scholar 

  34. Jardin, F., Fourme, T., Page, B., Loubieòres, Y., Vieillard-Baron, A., Beauchet, A., & Bourdarias, J. P. (1999). Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest, 116(5), 1354–1359.

    CAS  PubMed  Google Scholar 

  35. Rudiger, A., & Singer, M. (2007). Mechanisms of sepsis-induced cardiac dysfunction. Critical Care Medicine, 35(6), 1599–1608.

    PubMed  Google Scholar 

  36. Dhainaut, J. F., Huyghebaert, M. F., Monsallier, J. F., Lefevre, G. U., Dall’Ava-Santucci, J. O., Brunet, F. A., Villemant, D. I., Carli, A. L., & Raichvarg, D. E. (1987). Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation, 75(3), 533–541.

    CAS  PubMed  Google Scholar 

  37. Baurand, A., Zelarayan, L., Betney, R., Gehrke, C., Dunger, S., Noack, C., Busjahn, A., Huelsken, J., Taketo, M. M., Birchmeier, W., & Dietz, R. (2007). β-Catenin downregulation is required for adaptive cardiac remodeling. Circulation Research, 100(9), 1353–1362.

    CAS  PubMed  Google Scholar 

  38. Zelarayán, L. C., Noack, C., Sekkali, B., Kmecova, J., Gehrke, C., Renger, A., Zafiriou, M. P., van der Nagel, R., Dietz, R., De Windt, L. J., & Balligand, J. L. (2008). β-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proceedings of the National Academy of Sciences, 105(50), 19762–19767.

    Google Scholar 

  39. Duran-Bedolla, J., de Oca-Sandoval, M. A. M., Saldaña-Navor, V., Villalobos-Silva, J. A., Rodriguez, M. C., & Rivas-Arancibia, S. (2014). Sepsis, mitochondrial failure and multiple organ dysfunction. Clinical and Investigative Medicine, 37(2), E58–E69.

  40. Gore, D. C., Jahoor, F., Hibbert, J. M., & DeMaria, E. J. (1996). Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Annals of Surgery, 224(1), 97.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Trzeciak, S., Dellinger, R. P., Parrillo, J. E., Guglielmi, M., Bajaj, J., Abate, N. L., Arnold, R. C., Colilla, S., Zanotti, S., Hollenberg, S. M., & in Resuscitation, M. A. (2007). Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: Relationship to hemodynamics, oxygen transport, and survival. Annals of Emergency Medicine, 49(1), 88–98.

    PubMed  Google Scholar 

  42. Supinski, G. S., & Callahan, L. A. (2006). Polyethylene glycol–superoxide dismutase prevents endotoxin-induced cardiac dysfunction. American Journal of Respiratory and Critical Care Medicine, 173(11), 1240–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barth, E., Radermacher, P., Thiemermann, C., Weber, S., Georgieff, M., & Albuszies, G. (2006). Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Critical Care Medicine, 34(2), 307–313.

    CAS  PubMed  Google Scholar 

  44. Matsuno, K., Iwata, K., Matsumoto, M., Katsuyama, M., Cui, W., Murata, A., Nakamura, H., Ibi, M., Ikami, K., Zhang, J., & Matoba, S. (2012). NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radical Biology and Medicine, 53(9), 1718–1728.

    CAS  PubMed  Google Scholar 

  45. Bernardi, P., & Di Lisa, F. (2015). The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. Journal of Molecular and Cellular Cardiology, 78, 100–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Halestrap, A. P. (2009). What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology, 46(6), 821–831.

    CAS  PubMed  Google Scholar 

  47. Arrázola, M. S., & Inestrosa, N. C. (2013). Wnt3a ligand prevents mitochondrial permeability transition pore opening induced by Aβ oligomers. In Program of the XXVII Annual Meeting of the Chilean Society for Cell Biology (Puerto Varas–Chile) (pp. 23–27).

  48. Rittirsch, D., Flierl, M. A., & Ward, P. A. (2008). Harmful molecular mechanisms in sepsis. Nature Reviews Immunology, 8(10), 776–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cuenca, A. G., Gentile, L. F., Lopez, M. C., Ungaro, R., Liu, H., **ao, W., Seok, J., Mindrinos, M. N., Ang, D., Baslanti, T. O., & Bihorac, A. (2013). Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients. Critical Care Medicine, 41(5), 1175–1185.

    CAS  PubMed  Google Scholar 

  50. Hutchins, N. A., Unsinger, J., Hotchkiss, R. S., & Ayala, A. (2014). The new normal: Immunomodulatory agents against sepsis immune suppression. Trends in Molecular Medicine, 20(4), 224–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Boomer, J. S., Shuherk-Shaffer, J., Hotchkiss, R. S., & Green, J. M. (2012). A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Critical Care, 16(3), 1–14.

    Google Scholar 

  52. Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. W., Cobb, J. P., Matuschak, G. M., Buchman, T. G., & Karl, I. E. (1999). Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine, 27(7), 1230–1251.

    CAS  PubMed  Google Scholar 

  53. Demaret, J., Venet, F., Friggeri, A., Cazalis, M. A., Plassais, J., Jallades, L., Malcus, C., Poitevin-Later, F., Textoris, J., Lepape, A., & Monneret, G. (2015). Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology, 98(6), 1081–1090.

    CAS  PubMed  Google Scholar 

  54. Strzepa, A., Pritchard, K. A., & Dittel, B. N. (2017). Myeloperoxidase: A new player in autoimmunity. Cellular Immunology, 317, 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Blumenthal, A., Ehlers, S., Lauber, J., Buer, J., Lange, C., Goldmann, T., Heine, H., Brandt, E., & Reiling, N. (2006). The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood, 108(3), 965–973.

    CAS  PubMed  Google Scholar 

  56. Moon, J., Zhou, H., Zhang, L. S., Tan, W., Liu, Y., Zhang, S., Morlock, L. K., Bao, X., Palecek, S. P., Feng, J. Q., & Williams, N. S. (2017). Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proceedings of the National Academy of Sciences, 114(7), 1649–1654.

    CAS  Google Scholar 

  57. Thompson, M., Kliewer, A., Maass, D., Becker, L., White, D. J., Bryant, D., Arteaga, G., Horton, J., & Giroir, B. P. (2000). Increased cardiomyocyte intracellular calcium during endotoxin-induced cardiac dysfunction in guinea pigs. Pediatric Research, 47(5), 669–676.

    CAS  PubMed  Google Scholar 

  58. Jones, A. E., & Puskarich, M. A. (2011). Sepsis-induced tissue hypoperfusion. Critical Care Nursing Clinics, 23(1), 115–125.

    PubMed  Google Scholar 

  59. Tomita, K., Takashina, M., Mizuno, N., Sakata, K., Hattori, K., Imura, J., Ohashi, W., & Hattori, Y. (2015). Cardiac fibroblasts: Contributory role in septic cardiac dysfunction. Journal of Surgical Research, 193(2), 874–887.

    CAS  Google Scholar 

  60. Zhang, W., Xu, X., Kao, R., Mele, T., Kvietys, P., Martin, C. M., & Rui, T. (2014). Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: The role of NLRP3 inflammasome activation. PLoS One, 9(9), e107639.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thanks Mr. Parveen Garg, the Chairman of ISF College of Pharmacy, Moga for providing funding and necessary instrumentation and infrastructure facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

PS and GS designed the study. PS and KG, AK performed all the experimental procedures and GS supervised the study. RK, AK, SP and PS helped in the preparation of manuscript. GS and KG revised the manuscript. KG helped in statistical analysis and formatting during revision of manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Gaaminepreet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the department of Pharmacology, ISF College of pharmacy, Moga, (Punjab), India (ISFCP/IAEC/CPCSEA/Meeting No. 25/2019/ Protocol No. 430).

Additional information

Handling Editor: Dakshesh Patel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Gupta, K., Kumari, A. et al. Wnt/β-Catenin Antagonist Pyrvinium Exerts Cardioprotective Effects in Polymicrobial Sepsis Model by Attenuating Calcium Dyshomeostasis and Mitochondrial Dysfunction. Cardiovasc Toxicol 21, 517–532 (2021). https://doi.org/10.1007/s12012-021-09643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09643-4

Keywords

Navigation