Log in

Multielement Determination in Medicinal Plants and Herbal Medicines Containing Cynara scolymus L., Harpagophytum procumbens D.C., and Maytenus ilifolia (Mart.) ex Reiss from Brazil Using ICP OES

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Worldwide, medicinal plants and herbal medicines are widely consumed. The aim of this study was to determine macro- (Ca, K, Mg, Na, and P) and microelements (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, Sr, V, and Zn) in medicinal plants and herbal medicines: “globe artichoke” - Cynara scolymus L., “devil’s claw” - Harpagophytum procumbens D.C., and “espinheira santa” - Maytenus ilifolia (Mart) ex Reiss. Concentrations of 24 (essential and toxic potentially) elements in samples from Brazil were determined using a sequential optical emission spectrometer with inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion, assisted by microwave radiation. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to carry out an exploratory analysis of samples. The elements were quantified (in μg/g): Al (20.24–1261.64), Ba (18.90–63.18), Ca (2877.6–19,957.40), Cr (0.28–1.38), Cu (4.16–21.99), Fe (8.54–627.49), K (1786.12–32,297.19), Mg (505.82–6174.52), Mn (0.40–205.64), Na (1717.23–18,596.45), Ni (< LoQ–0.99), P (35.12–2899.91), Se (1.52–3.71), Sn (1.53–12.43), Sr (52.33–84.31), V (< LoQ–0.24), and Zn (2.60–30.56). As, Cd, Co, Mo, Pb, and Sb, in all the investigated samples, were found to be below the limit of detection (LoD) and quantification (LoQ) values of ICP OES. These medicinal plants and herbal medicines can be sources of Ca, K, Mg, Na, P, Cu, Fe, Mn, Se, and Zn. All samples showed considerable levels of Al. PCA and HCA showed that the samples separated into two large groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sarquis RSFR, Sarquis IR, Sarquis IR, Fernandes CP, Silva GA, Lima e Silva RB, Jardim MAG, Sánchez-Ortíz BL, Carvalho JCT (2019) The use of medicinal plants in the riverside community of the Mazagão River in the Brazilian Amazon, Amapá, Brazil: ethnobotanical and ethnopharmacological studies. Evid Based Complement Alternat Med 2019:6087509

    Google Scholar 

  2. Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6(11):1–5

    PubMed  PubMed Central  Google Scholar 

  3. Macedo JGF, Menezes IRA, Ribeiro DA, Santos MO, Mâcedo DG, Macêdo MJF, Almeida BV, Oliveira LGS, Leite CP, Souza MMA (2018) Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: comparative study. Evid Based Complement Alternat Med 2018:6769193

    Google Scholar 

  4. Ekor M (2013) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Google Scholar 

  5. Asadi-Samani M, Kafash-Farkhad N, Azimi N, Fasihi A, Alinia-Ahandani E, Rafieian-Kopaei M (2015) Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac J Trop Biomed 5(2):146–157

    CAS  Google Scholar 

  6. Palhares RM, Drummond MG, Brasil BSAF, Cosenza GP, Brandão MGL, Oliveira G (2015) Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS One 10(5):e0127866

    PubMed  PubMed Central  Google Scholar 

  7. Ghasemian M, Owlia S, Owlia MB (2016) Review of anti-inflammatory herbal medicines. Adv Pharmacol Sci 2016:9130979

    PubMed  PubMed Central  Google Scholar 

  8. WHO (2011) The world medicines situation 2011 – traditional medicines: global situation, issues and challenges. World Health Organization http://digicollection.org/hss/en/m/abstract/Js18063en/.

  9. Pereira JBA, Rodrigues MM, Morais IR, Vieira CRS, Sampaio JPM, Moura MG, Damasceno MFM, Silva JN, Calou IBF, Deus FA, Peron AP, Abreu MC, Militão GCG, Ferreira PMP (2015) The therapeutic role of the Program Farmacia Viva and the medicinal plants in the center-south of Piauí. Rev Bras Plantas Med 17(4):550–561

    Google Scholar 

  10. Santos Júnior AF, Matos RA, Andrade EMJ, dos Santos WNL, Magalhães HIF, Costa FN, Korn MGA (2017) Multielement determination of macro and micro contents in medicinal plants and phytomedicines from Brazil by ICP OES. J Braz Chem Soc 28(2):376–384

    Google Scholar 

  11. Peacock M, Badea M, Bruno F, Timotijevic L, Laccisaglia M, Hodgkins C, Raats M, Egan B (2019) Herbal supplements in the print media: communicating benefits and risks. BMC Complement Altern Med 19:196

    PubMed  PubMed Central  Google Scholar 

  12. Chellan P, Sadler PJ (2015) The elements of life and medicines. Philos Trans A Math Phys Eng Sci 373(2037):20140182

    PubMed  PubMed Central  Google Scholar 

  13. Brima EI (2017) Toxic elements in different medicinal plants and the impact on human health. Int J Environ Res Public Health 14(10):1209

    PubMed Central  Google Scholar 

  14. Salgueiro L, Martins AP, Correia H (2010) Raw materials: the importance of quality and safety. A review. Flavour Fragr J 25:253–271

    CAS  Google Scholar 

  15. Milani RF, Morgano MA, Saron ES, Silva FF, Cadore S (2015) Evaluation of direct analysis for trace elements in tea and herbal beverages by ICP-MS. J Braz Chem Soc 26(6):1211–1217

    CAS  Google Scholar 

  16. National Research Council – NRC (2004) Commitee on scientific assessment of bullet lead elemental composition comparison, forensic analysis: weighing bullet lead evidence. National Academies Press, Washington

    Google Scholar 

  17. Trevizan LC, Nóbrega JA (2007) Inductively coupled plasma optical emission spectrometry with axially viewed configuration: an overview of applications. J Braz Chem Soc 18(4):678–690

    CAS  Google Scholar 

  18. Marin S, Lacrimioara S, Cecilia R (2011) Evaluation of performance parameters for trace elements analysis in perennial plants using ICP-OES technique. J Plant Develop 18:87–93

    Google Scholar 

  19. Ghanjaoui ME, Cervera ML, El Rhazi M, Guardia M (2011) Validated fast procedure for trace element determination in basil powder. Food Chem 125(4):1309–1313

    CAS  Google Scholar 

  20. Gomez MR, Cerutti S, Sombra LL, Silva MF, Martinez LD (2007) Determination of heavy metals for the quality control in Argentinian herbal medicines by ETAAS and ICP-OES. Food Chem Toxicol 45(6):1060–1064

    CAS  PubMed  Google Scholar 

  21. Krejčová A, Kahoun D, Černohorský T, Pouzar M (2006) Determination of macro and trace element in multivitamins preparations by inductively coupled plasma optical emission spectrometry with slurry sample introduction. Food Chem 98(1):171–178

    Google Scholar 

  22. Gouveia ST, Silva FV, Costa LM, Nogueira ARA, Nóbrega JA (2001) Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations. Anal Chim Acta 445:269–275

    CAS  Google Scholar 

  23. Tuzen M, Soylak M (2005) Trace heavy metal levels in microwave digested honey samples from Middle Anatolia, Turkey. J Food Drug Anal 13(4):343–347

    CAS  Google Scholar 

  24. Padrón P, Paz S, Rubio C, Gutiérrez AJ, González-Weller D, Hardisson A (2020) Trace element levels in vegetable sausages and burgers determined by ICP-OES. Biol Trace Elem Res 194(1):616–626

    PubMed  Google Scholar 

  25. Novaes CG, Bezerra MA, da Silva EGP, dos Santos AMP, Romão ILS, Santos Neto JH (2016) A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchem J 128:331–346

    CAS  Google Scholar 

  26. ICH (2005) Validation of analytical procedures: text and methodology Q2 (R1). International Conference on Harmonisation. https://www.gmp-compliance.org/guidemgr/files/Q2(R1).pdf.

    Google Scholar 

  27. Schiavo D, Trevizan LC, Pereira-Filho ER, Nóbrega JA (2009) Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing. Spectrochim Acta B 64(6):544–548

    Google Scholar 

  28. Karak T, Bhagat RM (2010) Trace elements in tea leaves, made tea and tea infusion: a review. Food Res Int 43(9):2234–2252

    CAS  Google Scholar 

  29. Podwika W, Kleszcz K, Krośniak M, Zagrodzki P (2018) Copper, manganese, zinc, and cadmium in tea leaves of different types and origin. Biol Trace Elem Res 183(2):389–395

    CAS  PubMed  Google Scholar 

  30. Shaban NS, Abdou KA, Hassan NEY (2016) Impact of toxic heavy metals and pesticide residues in herbal products. Beni-Seuf Univ J Appl Sci 5(1):102–106

    Google Scholar 

  31. Silva PSC, Francisconi LS, Gonçalves RDMR (2016) Evaluation of major and trace elements in medicinal plants. J Braz Chem Soc 27(12):2273–2289

    CAS  Google Scholar 

  32. Moe SM (2008) Disorders involving calcium, phosphorus, and magnesium. Prim Care 35(2):215–2vi

    PubMed  PubMed Central  Google Scholar 

  33. Stone MS, Martyn L, Weaver CM (2016) Potassium intake, bioavailability, hypertension, and glucose control. Nutrients 8(7):444

    PubMed Central  Google Scholar 

  34. Küçükbay FZ, Kuyumcu E (2010) Determination of trace element contents of Thymus species from Turkey. Turk J Chem 34:911–919

    Google Scholar 

  35. Leal AS, Prado G, Gomes TCB, Sepe FP, Dalmázio I (2013) Determination of metals in medicinal plants highly consumed in Brazil. Braz J Pharm Sci 49(3):599–607

    CAS  Google Scholar 

  36. Ong GH, Yap CK, Mahmood M, Tan SG, Hamzah S (2013) Barium levels in soils and Centella asiatica. Trop Life Sci Res 24(1):55–70

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4(2):75–85

    Google Scholar 

  38. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157

    PubMed  PubMed Central  Google Scholar 

  39. Brazil MS (2005) Resolution of Collegiate Board No. 269 of September 22, 2005: Technical regulation on daily ingestion recommended (DIR) protein, vitamins and minerals. Ministry of Health. http://portal.anvisa.gov.br/documents/33916/394219/RDC_269_2005.pdf/2e95553c-a482-45c3-bdd1-f96162d607b3.

  40. Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med 13(2):102–108

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188:68–98

    PubMed  Google Scholar 

  42. Rehnberg GL, Hein JF, Carter SD, Linko RS, Laskey JW (1982) Chronic ingestion of Mn3O4 by rats: tissue accumulation and distribution of manganese in two generations. J Toxicol Environ Health 9(2):175–188

    CAS  PubMed  Google Scholar 

  43. EMEA (2008) Guideline on the specification limits for residues of metal catalysts or metal reagents, Doc. Ref. EMA/CHMP/SWP/4446/2000. European Medicines Agency. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-specification-limits-residues-metal-catalysts-metal-reagents_en.pdf.

  44. Wollein U, Bauer B, Habernegg R, Schramek N (2015) Potential metal impurities in active pharmaceutical substances and finished medicinal products – a market surveillance study. Eur J Pharm Sci 77:100–105

    CAS  PubMed  Google Scholar 

  45. Abernethy DR, DeStefano AJ, Cecil TL, Zaidi K, Williams RL (2010) Metal impurities in food and drugs. Pharm Res 27(5):750–755

    CAS  PubMed  Google Scholar 

  46. Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4(7):592–597

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jurca T, Marian E, Vicas L, Braun M, Tóth I (2013) Analysis of metal content in herbal medicines. Rev Chim (Bucharest) 64(12):1395–1398

    CAS  Google Scholar 

  48. Annan K, Dickson RA, Amponsah IK, Nooni IK (2013) The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharm Res 5(2):103–108

    Google Scholar 

  49. Küçükbay FZ, Kuyumcu E (2014) Determination of elements by atomic spectroscopy in medicinal plants employed to alleviate common cold symptoms. Spectrosc Spectr Anal 34(9):2548–2556

    Google Scholar 

  50. Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators. Biol Trace Elem Res 140(2):170–176

    CAS  PubMed  Google Scholar 

  51. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  52. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  53. Dopp E, Von Recklinghausen U, Hippler J, Diaz-Bone RA, Richard J, Zimmermann U, Rettenmeier AW, Hirner AV (2011) Toxicity of volatile methylated species of bismuth, arsenic, tin, and mercury in mammalian cells in vitro. J Toxicol 2011:503576

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42:599–603

    CAS  PubMed  Google Scholar 

  55. Ndhlala AR, Van Staden J (2012) Smokescreens and mirrors in safety and quality of herbal medicines: a case of commercialized herbal preparations. S Afr J Bot 82:4–10

    Google Scholar 

  56. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17(3):679

    CAS  PubMed Central  Google Scholar 

  57. Giacomino A, Abollino O, Casanova C, La Gioia C, Magi E, Malandrino M (2015) Determination of the total and bioaccessible contents of essential and potentially toxic elements in ayurvedic formulations purchased from different commercial channels. Microchem J 120:6–17

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the State University of Bahia (UNEB), “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES),” “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),” and Research Group: Biopharmaceutics and Drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal de Freitas Santos Júnior.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Aragão Tannus, C., de Souza Dias, F., Santana, F.B. et al. Multielement Determination in Medicinal Plants and Herbal Medicines Containing Cynara scolymus L., Harpagophytum procumbens D.C., and Maytenus ilifolia (Mart.) ex Reiss from Brazil Using ICP OES. Biol Trace Elem Res 199, 2330–2341 (2021). https://doi.org/10.1007/s12011-020-02334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02334-1

Keywords

Navigation