Log in

Acute Toxicity of Arsenic under Different Temperatures and Salinity Conditions on the White Shrimp Litopenaeus vannamei

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine acute toxicity in the post larvae of the white shrimp Litopenaeus vannamei after 96 h of exposure to dissolved arsenic under three different temperatures and salinity conditions. Recent reports have shown an increase in the presence of this metalloid in coastal waters, estuaries, and lagoons along the Mexican coast. The white shrimp stands out for its adaptability to temperature and salinity changes and for being the main product for many commercial fisheries; it has the highest volume of oceanic capture and production in Mexican shrimp farms. Lethal concentrations (LC50–96 h) were obtained at nine different combinations (3 × 3 combinations in total) of temperature (20, 25, and 30 °C) and salinity (17, 25, and 33) showing mean LC50–96 h values (±standard error) of 9.13 ± 0.76, 9.17 ± 0.56, and 6.23 ± 0.57 mgAs L−1(at 20 °C and 17, 25, and 33 salinity); 12.29 ± 2.09, 8.70 ± 0.82, and 8.03 ± 0.59 mgAs L−1 (at 25 °C and 17, 25, and 33 salinity); and 7.84 ± 1.30, 8.49 ± 1.40, and 7.54 ± 0.51 mgAs L−1 (at 30 °C and 17, 25, and 33 salinity), respectively. No significant differences were observed for the optimal temperature and isosmotic point of maintenance (25 °C–S 25) for the species, with respect to the other experimental conditions tested, except for at 20 °C–S 33, which was the most toxic. Toxicity under 20 °C–S 33 conditions was also higher than 25 °C–S 17 and 20 °C (S 17 or 25). The least toxic condition was 25 °C–S 17. All this suggests that the toxic effect of arsenic is not affected by temperature changes; it depends on the osmoregulatory pattern developed by the shrimp, either hyperosmotic at low salinity or hiposmotic at high salinity, as observed at least on the extreme salinity conditions here tested (17 and 33). However, further studies testing salinities near the isosmotic point (between 20 and 30 salinities) are needed to clarify these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leal-Acosta ML, Shumilin E, Mirlean N, Sapozhnikov D, Gordev V (2010) Arsenic and mercury contamination of sediments of geothermal springs, mangrove lagoon and the Santispac Bight, Bahía Concepción, Baja California Península. Bull Environ Contam Toxicol 85:609–613

    Article  PubMed  CAS  Google Scholar 

  2. Rodríguez-Meza GD, Shumilin E, Sapozhnikov D, Méndez-Rodríguez L, Acosta-Vargas B (2009) Evaluación geoquímica de elementos mayoritarios y oligoelementos en los sedimentos de Bahía Concepción (B. C. S., México). Boletín de la Sociedad Geológica Mexicana 61(1):57–72

    Google Scholar 

  3. Chavira MD (2008) Terminal multimodal y de contenedores riberas del Pantepec, puerto de Tuxpan, Veracruz. Resumen ejecutivo de la manifestación de impacto ambiental. Modalidad regional. http://sinat.semarnat.gob.mx/dgiraDocs/documentos/ver/resumenes/2008/30VE2008V0034.pdf Accesed July 2012

  4. Shumilin E, Páez-Osuna F, Green-Ruíz C, Sapozhnikov D, Rodriguez-Meza GD, Godinez-Orta L (2001) Arsenic, antimony, selenium and other trace elements in sediments of the La Paz Lagoon, Peninsula of Baja California, Mexico. Mar Pollut Bull 42(3):174–178

    Article  PubMed  CAS  Google Scholar 

  5. Shumilin E, Rodriguez-Meza GD, Sapozhnikov D, Lutsarev S, Murrillo de Nava J (2005) Arsenic concentrations in the surface sediments of the Magdalena–Almejas Lagoon complex, Baja California Peninsula, Mexico. Bull Environ Contam Toxicol 74:493–500

    Article  PubMed  CAS  Google Scholar 

  6. CICLOPLAFEST (2004). Catálogo de plaguicidas. Secretaria de Salud. Sagarpa. Semarnat y Secretaría de Economía. http://www.salud.gob.mx/unidades/cofepris/bv/libros/l45.zip Accesed july 2012

  7. Eisler R (2010) Compendium of trace metals and marine biota, vol 1. Plants and invertebrates. Elsevier, New York

    Google Scholar 

  8. Cifuentes-Lemus JL, Torres-García MP, Frías MM (1997). El Océano y sus recursos VII. Flujos de energía en el mar: Reproducción y migraciones, Cap. X. Ciclos Reproductivos. (2 ed). La Ciencia para todos. Fondo de Cultura Económica S. A .de C. V. México D. F. http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/063/htm/sec_14.html Accesed july 2012

  9. Raz-Guzmán A (2010) Estudio de caso: Crustáceos de la Laguna de Términos. In: Villalobos-Zapata GA, Mendoza-Vega J (eds) La biodiversidad en Campeche: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Campeche, Universidad Autónoma del Campeche. El Colegio de la Frontera Sur, México, pp 275–279

    Google Scholar 

  10. Smith RL, Smith TM (2004) Ecología. Pearson Addison Wesley, España

    Google Scholar 

  11. Valdez G, Díaz F, Re AD, Sierra E (2008) Efecto de la salinidad sobre la fisiología energética del camarón blanco Litopenaeus vannamei (Boone). Hidrobiológica 18(2):105–115

    Google Scholar 

  12. Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57:1591–1598

    Article  PubMed  CAS  Google Scholar 

  13. FAO (2010) Global study of shrimp fisheries. By Gillett R. Consultor de FAO. Fisheries Technical Paper 475. Rome, Italy: http://www.fao.org/docrep/013/i0300s/i0300s00.htm Accesed July 2012

  14. CONAPESCA (2009) Anuario estadístico de acuacultura y pesca. Comisión Nacional de Acuacultura y Pesca. Mazatlán, Sinaloa, México

    Google Scholar 

  15. Vanegas-Pérez C, Gaxiola-Cortez G, Robles-Mendoza C, Zúñiga-Lagunas S, Betancourt-Lozano M (2008) Ensayo de toxicidad aguda con camarones peneidos. In: Ramírez-Romero P, Mendoza-Cantú A (eds) Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo. La experiencia en México. SEMARNAT. INE, México, pp 169–190

    Google Scholar 

  16. Curtis MW, Copeland TL, Ward CH (1979) Acute toxicity of 12 industrial chemicals to freshwater and saltwater organisms. Water Res 13:137–141

    Article  CAS  Google Scholar 

  17. Krishnaja AP, Rege MS, Joshi AG (1987) Toxic effects of certain heavy metals (Hg, Cd, Pb, As and Se) on the intertidal Crab Scylla serrata. Mar Environ Res 21:109–119

    Article  CAS  Google Scholar 

  18. UNEP-FAO (1989) Test of the acute lethal toxicity of pollutants to marine fish and invertebrates. Métodos de Referencia para Estudios de Contaminación Marina no. 43

  19. American Public Health Association-APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C

    Google Scholar 

  20. Finney DJ (1952) Probit Analysis. A statistical treatment of the sigmoid response curve. Cambridge University Press, Cambridge, England

    Google Scholar 

  21. Castro-Janer E, Rifran L, Piaggio J, Gil A, Miller RJ, Schumaker TTS (2009) In vitro test to establish LC50 and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization. Vet Parasitol 162:120–128

    Article  PubMed  CAS  Google Scholar 

  22. Sprague JB, Fogels A (1977) Watch the Y in bioassay. In: Proceedings 3rd Aquatic Toxicity Workshop, Halifax, Nova Scotia, November 2–3, 1976, EPS-5-AR-77-1, Halifax, Canada, pp. 107–118. http://www.atw.ca/site_pages/Past%20Proceedings/Proceedings1976.PDF Accesed july 2012

  23. Ventura-Lima J, Reis BM, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotox Environ Safe 74:211–218

    Article  CAS  Google Scholar 

  24. Drobná Z, Walton FS, Paul DS, **ng W, Thomas DJ, Stýblo M (2010) Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 83:3–16

    Article  Google Scholar 

  25. Waqar A, Stanislav VI, Zhao FJ, Maathuis FJM (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  Google Scholar 

  26. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  PubMed  CAS  Google Scholar 

  27. Moreno Jiménez E (2010) Recuperación de suelos mineros contaminados con arsénico mediante fitotecnologías. Tesis Doctoral. Departamento de Química Agrícola, Universidad Autónoma de Madrid, España

    Google Scholar 

  28. Scott-Fordsmand JJ, Bruus Pedersen M (1995) Quality criteria for selected inorganic compounds, working report from the Ministry of Environment No. 48, DK

  29. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  PubMed  CAS  Google Scholar 

  30. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  31. Del Razo LM, Quintanilla-Vega B, Albores A (2004) Arsénico. In: Albert LA (ed) Toxicología Ambiental. Universidad Autónoma de Ciudad Juárez, Chihuahua, México, pp 295–308

    Google Scholar 

  32. Le CX (2002) Arsenic speciation in the environment and humans. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, Inc, New York

    Google Scholar 

  33. Clark RB (1992) Marine pollution, 3rd edn. Clarendon Press Oxford, New York

    Google Scholar 

  34. Ohrel RL Jr, Register KM (2006) Volunteer estuary monitoring a methods manual, 2nd edn. EPA, U.S.

    Google Scholar 

  35. Flores Baca B (2010) Tendencia fisicoquímica y estado trófico de la laguna “El Yucateco”, Tabasco de 2003 a 2009. MSc dissertation. Instituto Biología, UNAM

    Google Scholar 

  36. Libes SM (1992) An introduction to marine biogeochemistry. John Wiley and Sons, Inc., New York

    Google Scholar 

  37. Smedley PL, Kinniburgh DG (2002) A review of the sources, behavior and distribution of arsenic in natural water. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  38. Bryant V, Newberry DM, McLusky DS, Campbell R (1985) Effect of temperature and salinity on the toxicity of arsenic to three estuarine invertebrates (Corophium volutator, Macoma balthica, Tubifex costatus). Mar Ecol Prog Ser 24:129–137

    Article  CAS  Google Scholar 

  39. Rainbow PS (1997) Trace metal accumulation in marine invertebrates: marine biology or marine chemistry? J Mar Biol Assoc UK 77:195–210

    Article  CAS  Google Scholar 

  40. Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf S 44:169–175

    Article  CAS  Google Scholar 

  41. Moksnes PO, Lindahl U, Haux C (1995) Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei: a study of dose-dependent induction. Mar Environ Res 39:143–146

    Article  CAS  Google Scholar 

  42. Wu JP, Chen HC (2005) Metallothionein induction and heavy metal accumulation in white shrimp (Litopenaeus vannamei). Comp Biochem Phys C 140:383–394

    Google Scholar 

  43. He X, Ma Q (2009) Induction of metallothionein I by arsenic via metal-activated transcription factor 1. J Biol Chem 284(19):12609–12621

    Article  PubMed  CAS  Google Scholar 

  44. Ngu TT, Stillman MJ (2006) Arsenic binding to human metallothionein. J Am Chem Soc 128:12473–12483

    Article  PubMed  CAS  Google Scholar 

  45. Falnoga I, Stibilj V, Tušek-Žnidarič M, Šlejkovec Z, Mazej D, Jaćimovic R, Ščančar J (2000) Effect of arsenic trioxide on metallothionein and its conversion to different arsenic metabolites in hen liver. Biol Trace Elem Res 78:241–254

    Article  PubMed  CAS  Google Scholar 

  46. Schlenk D, Wolford L, Chelius M, Steevens J, Chan KM (1997) Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comp Biochem Phys C 118:177–183

    CAS  Google Scholar 

  47. Flora SJS, Tripathi N (1998) Hepatic and renal metallothionein induction following single oral administration of gallium arsenide in rats. Int J Biochem Mol Biol 45(6):1121–1127

    CAS  Google Scholar 

  48. Fowler SW, Ünlü Yaşar M (1978) Factors affecting bioaccumulation and elimination of arsenic in the shrimp Lysmata seticaudata. Chemosphere 9:711–720

    Article  Google Scholar 

  49. Ünlü MY, Fowler SW (1979) Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis. Mar Biol 51:209–219

    Article  Google Scholar 

  50. Pinheiro MA, Fransozo A (1995) Fecundidad de Pachycheles haigae Rodríguez Da Costa, 1960 (Crustacea, Anomura, Porcenallidae) em Ubatuba (SP), Brasil. Braz J Biol 55(4):623–631

    Google Scholar 

  51. Navarro JM (2002) Fisiología energética de pectínidos iberoamericanos. In: Maeda-Martínez A (ed) Los moluscos pectínidos de Iberoamerica: ciencia y acuicultura. Editorial Limusa, México

    Google Scholar 

  52. Bhandiwad A, Johnsen S (2011) The effects of salinity and temperature on the transparency of the grass shrimp Paleomonetes pugio. J Exp Biol 214:709–716

    Article  PubMed  Google Scholar 

  53. Martínez CLR (1999) Cultivo de camarones peneidos, principios y prácticas. AGT EDITOR, S. A. México

    Google Scholar 

  54. Gordon MS (1979) Fisiología animal. Principios y adaptaciones al medio ambiente. Compañía Editorial Continental S. A, México

    Google Scholar 

  55. Hill RW (1980) Fisiología animal comparada, un enfoque ambiental. Ed. Reverte, Barcelona, España

    Google Scholar 

  56. de Moles ML F (2008) Regulación de la temperatura. In: Fanjul ML, Hiriart M (eds) Una fisiología comparada metabólica y ambiental. Siglo XXI, México

    Google Scholar 

  57. Espina S, Vanegas C (2005) Ecofisiología y contaminación. In: Botello AV, von Osten RJ, Gold-Bouchot G, Agraz-Hernández C (eds) Universidad Autónoma de Campeche, Universidad Nacional Autónoma de México, Instituto Nacional de Ecología. Golfo de México, contaminación e impacto ambiental: Diagnóstico y tendencias, México, pp 53–78

    Google Scholar 

  58. Lucena A, Leonardi G, Pichardo G, Farci G (2006) Sobrevivencia de las larvas de camarón a baja salinidad. Educare 10 (1). http://revistas.upel.edu.ve/index.php/educare/article/view/120 Accesed August 2012

  59. Re AD, Díaz F, Sierra E, Gómez-Jiménez S (2004) Consumo de oxígeno, excreción de amonio y capacidad osmorreguladora de Litopenaeus stylirostris (Stimpson) expuesto a diferentes combinaciones de temperatura y salinidad. Cienc Mar 30(3):443–453

    CAS  Google Scholar 

  60. Benson AA, Chapelle S, Nevenzel JC, Hakanson JL, Bolis L, Gibbs AG (1987). Environmental perturbations of gill molecular structure. In: Dorigan JV, Harrison FL (eds) Physiological responses of marine organisms to environmental stresses, pp 29–33

  61. Eckert R, Randall D, Augustine G (1990) Fisiología animal. Interamericana-McGraw-Hill, Mexico

    Google Scholar 

  62. Henry RP, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid–base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physio 3:431. doi:10.3389/fphys.2012.00431

    Article  Google Scholar 

  63. Rosas C, Cuzon G, Gaxiola G, Pascual C, Taboada G, Arena L, Wormhoudt AV (2002) An energetic and conceptual model of the physiological role of dietary carbohydrates and salinity on Litopenaeus vannamei juveniles. J Exp Mar Biol Ecol 268(1):47–67

    Article  CAS  Google Scholar 

  64. Panikkar NK (1968) Osmotic behavior of shrimps and prawns in relation to their biology and culture. FAO Fish Rep 57:527–538

    Google Scholar 

  65. Sanders JG (1986) Direct and indirect effects of arsenic on the survival and fecundity of estuarine zooplankton. Can J Fish Aquat Sci 43:694–699

    Article  CAS  Google Scholar 

  66. USEPA (1985) Ambient water quality criteria for arsenic. Rep. 440/5-80-021.

  67. Mancilla-Villa OR, Ortega-Escobar HM, Ramírez-Ayala C, Uscanga-Mortera E, Ramos-Bello R, Reyes-Ortigoza AL (2012) Metales pesados totales y arsénico en el para riego de Puebla y Veracruz, México. Rev Int Contam Ambie 28(1):39–48

    CAS  Google Scholar 

Download references

Acknowledgments

Authors express their gratitude to Dr. Gabriela Gaxiola for providing the food for the postlarvae and Dr. Cecilia Vanegas for her support through the experimental work; to Fitmar Proveedoras de Larvas S. A. de C. V. for species donations. We are very grateful to M.C. Sergio Rendón and M. C. Alfredo Ordiano for technical support. Thank you to Consejo Nacional de Ciencia y Tecnología (CONACYT) for the grant to J. A. Valentino-Álvarez (grant no. 41530) and DGAPA-PAPIIT for financial support to the Project IN227207. Special thanks to Msc. Enrique Núñez-Jiménez and Stuart Futon for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Núñez-Nogueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentino-Álvarez, J.A., Núñez-Nogueira, G. & Fernández-Bringas, L. Acute Toxicity of Arsenic under Different Temperatures and Salinity Conditions on the White Shrimp Litopenaeus vannamei . Biol Trace Elem Res 152, 350–357 (2013). https://doi.org/10.1007/s12011-013-9635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9635-6

Keywords

Navigation