Log in

Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, Enterobacter aerogenes KCTC2190 was isolated from soil around a cattle shed area, which was capable of producing intracellular β-galactosidase. Partially purified β-galactosidase was immobilized by entrapment method in agar-agar gel matrix. Agar-agar entrapped beads were prepared by drop** the enzyme-agar solution to ice-cooled toluene-chloroform ((3:1 (v/v)). 45.88±0.11% activity of partially purified β-galactosidase was retained after immobilization (bead shape). Maximum immobilization yield was observed in the presence of 2.5% agar-agar concentration. After immobilization, optimum temperature required for the enzyme-substrate reaction was shifted from 50 to 60 °C and the optimum reaction time was shifted from 15 to 25 min. The optimum pH for both free and immobilized β-galactosidase was pH 7. Free enzyme showed lower activation energy in comparison with the immobilized one. For free as well as immobilized β-galactosidase thermal deactivation, rate constant (kd) increased with increasing temperature while the values of decimal reduction time (D-values) and half-lives (t1/2) decreased. Immobilization process increased the t1/2 and D-values of β-galactosidase while it decreased the kd. Thermostability of immobilized β-galactosidase was higher as they showed higher enthalpy (ΔΗ0) and Gibb’s free energy (ΔG0)value than those of the free β-galactosidase. The negative entropy (ΔS0) of free and immobilized β-galactosidase established that both were in a more ordered state within the temperature range (50 to 70 °C) studied. Immobilized β-galactosidase was able to retain 51.65±1.61% of its initial activity after 7 batches of enzyme-substrate reaction. Immobilized β-galactosidase showed 78.09±3.69% of its initial activity even after 40 days of storage at 4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. **, L., Li, Y., Ren, X. H., & Lee, J. H. (2015). Immobilization of lactase onto various polymer nanofibers for enzyme stabilization and recycling. Journal of Microbiology and Biotechnology, 25(8), 1291–1298. https://doi.org/10.4014/jmb.1501.01012.

    Article  CAS  PubMed  Google Scholar 

  2. Martarello, R. D. A., Cunha, L., Cardoso, S. L., de Freitas, M. M., Silveira, D., Fonseca-Bazzo, Y. M., Homem-de-Mello, M., Filho, E. X. F., & Magalhães, P. O. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1), 81. https://doi.org/10.1186/s13568-019-0805-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu, X., Fan, X., Fan, C., Qin, X., Liu, B., Nie, C., Sun, N., Yao, Q., Zhang, Y., & Zhang, W. (2019). Production optimization of an active-galactosidase of Bifidobacterium animalis in heterologous expression systems. BioMed Research International, 2019, 1–10. https://doi.org/10.1155/2019/8010635.

    Article  CAS  Google Scholar 

  4. Oluwaniyi, T. T., Omafuvbe, B. O., & Agboola, F. K. (2016) Purification and characterization of β-galactosidase from Kluveromyces lactis isolated from a yoghurt waste site. Research & Reviews: Journal of Microbiology and Biotechnology, 5, 52–57.

  5. Venkateswarulu, T. C., Peele, K. A., Krupanidhi, S., Reddy, K. P. N., Indira, M., Rao, A. R., Kumar, R. B., & Prabhakar, K. V. (2020). Biochemical and molecular characterization of lactase producing bacterium isolated from dairy effluent. Journal of King Saud University-Science, 32(2), 1581–1585. https://doi.org/10.1016/j.jksus.2019.12.014.

    Article  Google Scholar 

  6. Niu, D., Tian, X., Mchunu, N. P., Jia, C., Singh, S., Liu, X., Prior, B. A., & Lu, F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Electronic Journal of Biotechnology, 27, 37–43. https://doi.org/10.1016/j.ejbt.2017.03.001.

    Article  CAS  Google Scholar 

  7. Gomaa, E. Z. (2018). β-galactosidase from Lactobacillus delbrueckii and Lactobacillus reuteri: optimization, characterization and formation of galactooligosaccharides. Indian Journal of Biotechnology, 17, 407–415.

    CAS  Google Scholar 

  8. Venkateswarulu, T. C., Vidya Prabhakar, K., & Bharath Kumar, R. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotechnol, 7, 1–9. https://doi.org/10.1007/s13205-017-0805-7.

    Article  Google Scholar 

  9. Alikkunju, A. P., Sainjan, N., Silvester, R., Joseph, A., Rahiman, M., Antony, A. C., Kumaran, R. C., & Hatha, M. (2016). Screening and characterization of cold-active β -galactosidase producing psychotrophic Enterobacter ludwigii from the sediments of Arctic Fjord. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-016-2111-y.

  10. Ghatak, A., Guha, A. K., & Ray, L. (2013). Immobilization of β -galactosidase from Enterobacter cloacae : characterization and its use in the continuous production of low lactose milk. Indian Journal of Biotechnology, 12, 523–530.

    CAS  Google Scholar 

  11. Maheswari, N. U., & Priyadarshini, S. I. (2014). Effect of different immobilization techniques on α- amylase. Journal of Chemical and Pharmaceutical Research, 6(5), 768–774.

    Google Scholar 

  12. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3. Biotech, 3(1), 1–9. https://doi.org/10.1007/s13205-012-0071-7.

    Article  Google Scholar 

  13. Mahajan, R., Gupta, V. K., & Sharma, J. (2010). Comparison and suitability of gel matrix for entrap** higher content of enzymes for commercial applications. Indian Journal of Pharmaceutical Sciences, 72(2), 223. https://doi.org/10.4103/0250-474X.65010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192.

    Article  CAS  Google Scholar 

  15. Pervez, S., Nawaz, M. A., Jamal, M., Jan, T., Maqbool, F., Shah, I., Aman, A., & Qader, S. A. U. (2019). Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: utilization of agar-agar as an organic matrix for immobilization. Carbohydrate Research, 486, 107860. https://doi.org/10.1016/j.carres.2019.107860.

    Article  CAS  PubMed  Google Scholar 

  16. Sattar, H., Aman, A., & Qader, S. A. U. (2018). Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. International Journal of Biological Macromolecules, 111, 917–922. https://doi.org/10.1016/j.ijbiomac.2018.01.105.

    Article  CAS  PubMed  Google Scholar 

  17. Bustamante-Vargas, C. E., Junges, A., Venquiaruto, L. D., Oro, C. E. D., Julio-Orozco, D. J., Zabot, G. L., Tres, M. V., Paroul, N., Backes, G. T., & Dallago, R. M. (2019). Thermal inactivation kinetics and thermodynamic properties of immobilised Aspergillus niger pectinase in rigid polyurethane foam. International Food Research Journal, 26(5), 1535–1545.

    CAS  Google Scholar 

  18. Nguyen, T. H., Splechtna, B., Steinböck, M., Kneifel, W., Lettner, H. P., Kulbe, K. D., & Haltrich, D. (2006). Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54(14), 4989–4998. https://doi.org/10.1021/jf053126u.

    Article  CAS  PubMed  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randal, R. L. (1951). Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  Google Scholar 

  20. Holt, J. G., Krieg, N. R., Peter, H. A. S., & Bergy, D. H. (1994). Bergy’s manual of determinative Bacteriology (9th ed.). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  21. Lee, J. Y., Kwak, M. S., Roh, J. B., Kim, K., & Sung, M. H. (2017). Microbial β-galactosidase of Pediococcus pentosaceus ID-7: Isolation, cloning, and molecular characterization. Journal of Microbiology and Biotechnology, 27(3), 598–609. https://doi.org/10.4014/jmb.1611.11015.

    Article  CAS  PubMed  Google Scholar 

  22. Sumathy, R., Vijayalakshmi, M., & Deecaraman, M. (2012). Study on β-galactosidase of Lactobacillus SP from milk products and its applications. International Journal of Applied Biology and Pharmaceutical Technology, 3(4), 138–148.

    CAS  Google Scholar 

  23. Konozy, E. H. E. (2016). Isolation, purification and characterization of a thermostable β-galactosidase isoform from Erythrina indica seeds. Global Advanced Research Journal of Agricultural Science, 5(6), 175–182.

    Google Scholar 

  24. Sen, S., Ray, L., & Chattopadhyay, P. (2012). Production, purification, immobilization, and characterization of a thermostable β-galactosidase from Aspergillus alliaceus. Applied Biochemistry and Biotechnology, 167(7), 1938–1953. https://doi.org/10.1007/s12010-012-9732-6.

    Article  CAS  PubMed  Google Scholar 

  25. Rehman, H. U., Aman, A., Zoha, R. R., & Qader, S. A. U. (2014). Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydrate Polymers, 102, 622–626. https://doi.org/10.1016/j.carbpol.2013.11.073.

    Article  CAS  PubMed  Google Scholar 

  26. Wahab, W. A. A., Karam, E. A., Hassan, M. E., Kansoh, A. L., Esawy, M. A., & Awad, G. E. (2018). Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. International Journal of Biological Macromolecules, 113, 159–170. https://doi.org/10.1016/j.ijbiomac.2018.02.086.

    Article  CAS  PubMed  Google Scholar 

  27. Pal, A., Lobo, M., & Khanum, F. (2013). Extraction , purification and thermodynamic characterization of almond ( Amygdalus communis ) b -galactosidase for the preparation of delactosed milk. Food Technology and Biotechnology, 51(1), 53–61.

    CAS  Google Scholar 

  28. Maity, M., Sanyal, S., Bhowal, J., & Bhattacharyya, D. K. (2013). Studies on isolation and characterization of lactase produced from soil bacteria. Research Journal of Recent Sciences, 2(8), 92–94.

    CAS  Google Scholar 

  29. Ghatak, A., Guha, A. K., & Ray, L. (2010). β - D -galactosidase from Enterobacter cloacae : production and some physicochemical properties. Applied Biochemistry and Biotechnology, 162(6), 1678–1688. https://doi.org/10.1007/s12010-010-8949-5.

    Article  CAS  PubMed  Google Scholar 

  30. Mozumder, N. H. M. R., Akhtaruzzaman, M., Bakr, M. A., & Zohra, F. T. (2012). Study on isolation and partial purification of lactase (β-galactosidase) enzyme from Lactobacillus bacteria isolated from yogurt. Journal of Scientific Research, 4(1), 239–239.

    Article  CAS  Google Scholar 

  31. Kalita, T., Sangma, S. D., Bez, G., & Ambasht, P. K. (2020). Immobilization of acid phosphatase in agar-agar and gelatin: comparative characterization. Journal of Scientific Research, 64(2), 192–200. https://doi.org/10.37398/JSR.2020.640227.

    Article  Google Scholar 

  32. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81(2), 252–259. https://doi.org/10.1016/j.carbpol.2010.02.027.

    Article  CAS  Google Scholar 

  33. Selvarajan, E., & Mohanasrinivasan, V. (2015). Kinetic studies on exploring lactose hydrolysis potential of β galactosidase extracted from Lactobacillus plantarum HF571129. Journal of Food Science and Technology, 52(10), 6206–6217. https://doi.org/10.1007/s13197-015-1729-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmed, S. A., Saleh, S. A., Abdel-Hameed, S. A., & Fayad, A. M. (2019). Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. Heliyon, 5(5), e01674. https://doi.org/10.1016/j.heliyon.2019.e01674.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pal, A., & Khanum, F. (2012). Covalent immobilization of xylanase on the surface of alginate-glutaraldehyde beads decreases the ‘catalytic efficiency’but provides ‘low temperature stabilization’effect. Journal of Biochemical Technology, 3(5), 409–413.

    CAS  Google Scholar 

  36. Pradhan, S., Gothwal, R. K., Mohan, M. K., & Ghosh, P. Evaluating bacterial cell immobilization of Brevibacillus formosus BISR-1 and Paenibacillus sp. BISR-047 with different matrices. International Journal of Engineering Research & Technology, 8(6), 1358–1363.

Download references

Acknowledgements

The authors are grateful to the School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India, for giving facilities to pursue the research work. Authors are thankful to the Indian Council of Medical Research, New Delhi, India, for providing Senior Research Fellowship to carry out the study.

Code Availability

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, data collection, data analysis, and preparation of manuscript draft were carried out by Manisha Maity. Research conceptualization, data interpretation, and preparation of manuscript draft were performed by Aparupa Bhattacharyya. Research conceptualization and preparation of manuscript draft were carried out by Jayati Bhowal. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jayati Bhowal.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, M., Bhattacharyya, A. & Bhowal, J. Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Appl Biochem Biotechnol 193, 2198–2224 (2021). https://doi.org/10.1007/s12010-021-03534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03534-8

Keywords

Navigation