Log in

Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aldose reductase (AR) belongs to NADPH-dependent oxidoreductases and converts glucose to sorbitol in the polyol pathway. AR inhibition is essential to prevent diabetic complications. Here, AR was purified from sheep kidney using simple methods and determined the interactions between some calcium channel blockers and the enzyme. It was found that calcium channel blockers (cinnarizine, nilvadipine, amlodipine besylate, nifedipine, isradipine, and nitrendipine) exhibit potential inhibitor properties for sheep kidney AR with IC50 values in the range of 5.87–8.77 μM and Ki constants in the range of 2.07 ± 0.72–5.62 ± 1.53 μM. The calcium channel blockers showed different inhibition mechanisms. It was determined that all studied compounds showed competitive inhibition effect except for isradipine and nitrendipine. They showed non-competitive inhibition. Among these drugs, cinnarizine was found to be the most potent AR inhibitor (Ki: 2.07 ± 0.72 μM). They may be useful in the treatment and/or prevention of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Demir, Y., Isik, M., Gulcin, I., & Beydemir, S. (2017). Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Journal of Biochemical and Molecular Toxicology, 31(9), e21935.

    Article  Google Scholar 

  2. Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87.

    Article  CAS  Google Scholar 

  3. Kou, L., Du, M., Liu, P., Zhang, B., Zhang, Y., Yang, P., Shang, M., & Wang, X. (2019). Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-Streptozotocin-induced diabetic rats via modulation on oxidative stress. Applied Biochemistry and Biotechnology, 187(1), 310–322.

    Article  CAS  Google Scholar 

  4. Kou, L., Du, M., Zhang, C., Dai, Z., Li, X., & Zhang, B. (2017). The hypoglycemic, Hypolipidemic, and anti-diabetic nephritic activities of zeaxanthin in diet-Streptozotocin-induced diabetic Sprague Dawley rats. Applied Biochemistry and Biotechnology, 182(3), 944–955.

    Article  CAS  Google Scholar 

  5. Shrivastava, A., Chaturvedi, U., Sonkar, R., Khanna, A. K., Saxena, J. K., & Bhatia, G. (2012). Antioxidant effect of Azadirachta indica on high fat diet induced diabetic Charles Foster rats. Applied Biochemistry and Biotechnology, 167(2), 229–236.

    Article  CAS  Google Scholar 

  6. Saraswat, M., Mrudula, T., Kumar, P. U., Suneetha, A., Rao, T. S., Srinivasulu, M., et al. (2006). Overexpression of aldose reductase in human cancer tissues. Medical Science Monitor, 12(12), 525–529.

    Google Scholar 

  7. Taslimi, P., Kandemir, F. M., Demir, Y., Ileritürk, M., Temel, Y., Caglayan, C., & Gulcin, I. (2019). The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. Journal of Biochemical and Molecular Toxicology, e22313. https://doi.org/10.1002/jbt.22313.

  8. Triggle, D. J. (2007). Calcium channel antagonists: Clinical uses--past, present, and future. Biochemical Pharmacology, 74(1), 1–9.

    Article  CAS  Google Scholar 

  9. Swarnalatha, G., Prasanthi, G., Sirisha, N., & Chetty, C. M. (2011). 1,4-Dihydropyridines: a multifunctional molecule- a review. International Journal of ChemTech Research, 3, 75–89.

    CAS  Google Scholar 

  10. Ushijima, K., Liu, Y., Maekawa, T., Ishikawa, E., Motosugi, Y., Ando, H., Tsuruoka, S. I., & Fujimura, A. (2010). Protective effect of amlodipine against osteoporosis in stroke-prone spontaneously hypertensive rats. European Journal of Pharmacology, 635(1-3), 227–230.

    Article  CAS  Google Scholar 

  11. Anekonda, T. S., Quinn, J. F., Harris, C., Frahler, K., Wadsworth, T. L., & Woltjer, R. L. (2011). L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer's disease. Neurobiology of Disease, 41(1), 62–70.

    Article  CAS  Google Scholar 

  12. Ellory, J. C., Kirk, K., Culliford, S. J., Nash, G. B., & Stuart, J. (1992). Nitrendipine is a potent inhibitor of the Ca2+-activated K+ channel of human erythrocytes. FEBS Letters, 296(2), 219–221.

    Article  CAS  Google Scholar 

  13. Mishra, B., Sahoo, J., & Dixit, P. K. (2016). Enhanced bioavailability of cinnarizine nanosuspensions by particle size engineering: Optimization and physicochemical investigations. Materials Science and Engineering: C Materials for Biological Applications, 63, 62–69.

    Article  CAS  Google Scholar 

  14. Lawlor, B., Segurado, R., Kennelly, S., Olde Rikkert, M. G. M., Howard, R., Pasquier, F., Börjesson-Hanson, A., Tsolaki, M., Lucca, U., Molloy, D. W., Coen, R., Riepe, M. W., Kálmán, J., Kenny, R. A., Cregg, F., O'Dwyer, S., Walsh, C., Adams, J., Banzi, R., Breuilh, L., Daly, L., Hendrix, S., Aisen, P., Gaynor, S., Sheikhi, A., Taekema, D. G., Verhey, F. R., Nemni, R., Nobili, F., Franceschi, M., Frisoni, G., Zanetti, O., Konsta, A., Anastasios, O., Nenopoulou, S., Tsolaki-Tagaraki, F., Pakaski, M., Dereeper, O., de la Sayette, V., Sénéchal, O., Lavenu, I., Devendeville, A., Calais, G., Crawford, F., Mullan, M., & for the NILVAD Study Group. (2018). Nilvadipine in mild to moderate Alzheimer disease: A randomized controlled trial. PLoS Medicine, 15(9), e1002660.

    Article  Google Scholar 

  15. Duncan, G., Marcantonio, J. M., & Tomlinson, J. (1991). Lens calcium and cataract. In G. Obrecht & L. W. Stark (Eds.), Presbyopia research (pp. 33–40). New York: Plenum Press.

    Chapter  Google Scholar 

  16. Ettl, A., Daxer, A., Gottinger, W., & Schmid, E. (2004). Inhibition of experimental diabetic cataract by topical administration of RS-verapamil hydrochloride. British Journal of Ophthalmology, 88(1), 44–47.

    Article  CAS  Google Scholar 

  17. Yasu, T., Kobayashi, M., Mutoh, A., Yamakawa, K., Momomura, S., & Ueda, S. (2013). Dihydropyridine calcium channel blockers inhibit non-esterified-fatty-acid-induced endothelial and rheological dysfunction. Clinical Science, 125(5), 247–255.

    Article  CAS  Google Scholar 

  18. Devamanoharan, P. S., & Varma, S. D. (1995). Inhibition of polyol formation in rat lens by verapamil. Journal of Ocular Pharmacology and Therapeutics, 11(4), 527–531.

    Article  CAS  Google Scholar 

  19. Fukao, K., Shimada, K., Hiki, M., Kiyanagi, T., Hirose, K., Kume, A., et al. (2011). Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between azelnidipine and amlodipine on glucose tolerance and endothelial function--a crossover trial (AGENT). Cardiovascular Diabetology, 10, 79.

    Article  CAS  Google Scholar 

  20. Zou, Y., Qin, X., Hao, X., Zhang, W., Yang, S., Yang, Y., Han, Z., Ma, B., & Zhu, C. (2015). Phenolic 4-hydroxy and 3,5-dihydroxy derivatives of 3- phenoxyquinoxalin-2(1H)-one as potent aldose reductase inhibitors with antioxidant activity. Bioorganic & Medicinal Chemistry Letters, 25(18), 3924–3927.

    Article  CAS  Google Scholar 

  21. Cerelli, M. J., Curtis, D. L., Dunn, J. P., Nelson, P. H., Peak, T. M., & Waterbury, L. D. (1986). Anti-inflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids. Journal of Medicinal Chemistry, 29(11), 2347–2351.

    Article  CAS  Google Scholar 

  22. Aslan, H. E., & Beydemir, S. (2017). Phenolic compounds: The inhibition effect on polyol pathway enzymes. Chemico-Biological Interaction, 266, 47–55.

    Article  CAS  Google Scholar 

  23. Sengul, B., & Beydemir, S. (2017). The interactions of cephalosporins on polyol pathway enzymes from sheep kidney. Archives of Physiology and Biochemistry, 124, 35–44.

    Article  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitic Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  26. Demir, Y., & Köksal, Z. (2019). The inhibition effects of some sulfonamides on human serum Paraoxonase-1 (hPON1). Pharmacological Reports. https://doi.org/10.1016/j.pharep.2019.02.012.

  27. Beydemir, S., & Demir, Y. (2017). Antiepileptic drugs: impacts on human serum paraoxonase-1. Journal of Biochemical and Molecular Toxicology, 31(6), e21889.

  28. Demir, Y., & Beydemir, S. (2015). Purification, refolding, and characterization of recombinant human paraoxonase-1. Turkish Journal of Chemistry, 39, 764–776.

    Article  CAS  Google Scholar 

  29. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666.

    Article  CAS  Google Scholar 

  30. Kim, S. B., Hwang, S. H., Suh, H. W., & Lim, S. S. (2017). Phytochemical analysis of Agrimonia pilosa Ledeb, its antioxidant activity and aldose reductase inhibitory potential. International Journal of Molecular Sciences, 18(2), 379.

    Article  Google Scholar 

  31. Kim, S. B., Hwang, S. H., Wang, Z., Yu, J. M., & Lim, S. S. (2017). Rapid identification and isolation of inhibitors of rat Lens aldose reductase and antioxidant in Maackia amurensis. BioMed Research International, 2017, 4941825. https://doi.org/10.1155/2017/4941825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caglayan, C., Demir, Y., Kücükler, S., Taslimi, P., Kandemir, F. M., & Gulcin, I. (2018). The effects of hesperidin on sodium Arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. Journal of Food Biochemistry, 43(2), e12720.

    Article  Google Scholar 

  33. Demir, Y., Taslimi, P., Ozaslan, M. S., Oztaskin, N., Çetinkaya, Y., Gulçin, İ., Beydemir, Ş., & Goksu, S. (2018). Antidiabetic potential: in vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Archiv der Pharmazie, 351(12), e1800263.

  34. Türkan, F., Huyut, Z., Demir, Y., Ertaş, F., & Beydemir, Ş. (2018). The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Archives of Physiology and Biochemistry, 22, 1–9.

    Google Scholar 

  35. Işık, M., Demir, Y., Kırıcı, M., Demir, R., Şimşek, F., & Beydemir, Ş. (2015). Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs. Archives of Physiology and Biochemistry, 121(3), 97–102.

    Article  Google Scholar 

  36. Patil, K. K., & Gacche, R. N. (2017). Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies. International Journal of Biological Macromolecules, 98, 730–738.

    Article  CAS  Google Scholar 

  37. Taslimi, P., Aslan, H. A., Demir, Y., Oztaskin, N., Maras, A., Gülcin, I., Beydemir, S., & Goksu, S. (2018). Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. International Journal of Biological Macromolecules, 119, 857–863.

    Article  CAS  Google Scholar 

  38. Alim, Z., Kilinc, N., Sengul, B., & Beydemir, S. (2017). Inhibition behaviors of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 277–284.

    Article  CAS  Google Scholar 

  39. Kadam, A., Dawanea, B., Pawar, M., Shegokar, H., Patil, K., Meshram, R., & Gacche, R. (2014). Development of novel pyrazolone derivatives as inhibitors of aldose reductase: an eco-friendly one-pot synthesis, experimental screening and in silico analysis. Bioorganic Chemistry, 53, 67–74.

    Article  CAS  Google Scholar 

  40. Turkes, C., Soyut, H., & Beydemir, S. (2014). Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacological Reports, 66(1), 74–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Demir.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkeş, C., Demir, Y. & Beydemir, Ş. Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity. Appl Biochem Biotechnol 189, 318–329 (2019). https://doi.org/10.1007/s12010-019-03009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03009-x

Keywords

Navigation