Log in

Improvement of Solvent Production from Xylose Mother Liquor by Engineering the Xylose Metabolic Pathway in Clostridium acetobutylicum EA 2018

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40 % of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the d-xylose proton-symporter, d-xylose isomerase, and xylulokinase was able to completely utilize glucose and l-arabinose, and 88 % xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50 % enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone–butanol–ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chiao, J. S., & Sun, Z. H. (2007). Journal of Molecular Microbiology and Biotechnology, 13(1–3), 12–14.

    Article  CAS  Google Scholar 

  2. Gu, Y., Jiang, Y., Wu, H., Liu, X., Li, Z., Li, J., **ao, H., Shen, Z., Dong, H., Yang, Y., Li, Y., Jiang, W., & Yang, S. (2011). Biotechnol. J., 6(11), 1348–1357.

    Article  CAS  Google Scholar 

  3. Ni, Y., & Sun, Z. (2009). Applied Microbiology and Biotechnology, 83(3), 415–423.

    Article  CAS  Google Scholar 

  4. **ao, H., Li, Z., Jiang, Y., Yang, Y., Jiang, W., Gu, Y., & Yang, S. (2012). Metabolic Engineering, 14(5), 569–578.

  5. Zhang, W. L., Liu, Z. Y., Liu, Z., & Li, F. L. (2012). Letters in Applied Microbiology, 55(3), 240–246.

    Article  CAS  Google Scholar 

  6. Cheng, H., Wang, B., Lv, J., Jiang, M., Lin, S., and Deng, Z., 2011. Microbial Cell Factories, 10: p. 5.

  7. Carter, B., Gilcrease, P. C., & Menkhaus, T. J. (2011). Biotechnology and Bioengineering, 108(9), 2046–2052.

    Article  CAS  Google Scholar 

  8. Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Biotechnology and Bioengineering, 93(6), 1196–1206.

    Article  CAS  Google Scholar 

  9. Rao, R. S., Jyothi Ch, P., Prakasham, R. S., Sarma, P. N., & Rao, L. V. (2006). Bioresource Technology, 97(15), 1974–1978.

    Article  CAS  Google Scholar 

  10. Wierckx, N., Koopman, F., Bandounas, L., de Winde, J. H., & Ruijssenaars, H. J. (2010). Microbial Biotechnology, 3(3), 336–343.

    Article  CAS  Google Scholar 

  11. Ezeji, T., & Blaschek, H. P. (2008). Bioresource Technology, 99(12), 5232–5242.

    Article  CAS  Google Scholar 

  12. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Biotechnology and Bioengineering, 97(6), 1460–1469.

    Article  CAS  Google Scholar 

  13. Ren, C., Gu, Y., Hu, S., Wu, Y., Wang, P., Yang, Y., Yang, C., Yang, S., & Jiang, W. (2010). Metabolic Engineering, 12(5), 446–454.

    Article  CAS  Google Scholar 

  14. **ao, H., Gu, Y., Ning, Y., Yang, Y., Mitchell, W. J., Jiang, W., & Yang, S. (2011). Applied and Environmental Microbiology, 77(22), 7886–7895.

    Article  CAS  Google Scholar 

  15. Wiesenborn, D. P., Rudolph, F. B., & Papoutsakis, E. T. (1988). Applied and Environmental Microbiology, 54(11), 2717–2722.

    CAS  Google Scholar 

  16. Baer, S. H., Blaschek, H. P., & Smith, T. L. (1987). Applied and Environmental Microbiology, 53(12), 2854–2861.

    CAS  Google Scholar 

  17. Mermelstein, L. D., & Papoutsakis, E. T. (1993). In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 59(4), 1077–1081.

    CAS  Google Scholar 

  18. Chambel, P., Oliveira, M., Andrade, P., Seabra, R., & Ferreira, M. (1997). Journal of Liquid Chromatography and Related Technologies, 20(18), 2949–2957.

    Article  CAS  Google Scholar 

  19. Ounine, K., Petitdemange, H., Raval, G., & Gay, R. (1985). Applied and Environmental Microbiology, 49(4), 874–878.

    CAS  Google Scholar 

  20. Hu, S.Y., Zheng, H.J., Gu, Y., Zhao, J.B., Zhang, W.W., Yang, Y.L., Wang, S.Y., Zhao, G.P., Yang, S., and Jiang, W.H., 2011. BMC Genomics, 12

  21. Gosseringer, R., Kuster, E., Galinier, A., Deutscher, J., & Hillen, W. (1997). Journal of Molecular Biology, 266(4), 665–676.

    Article  CAS  Google Scholar 

  22. Dahl, M. K., & Hillen, W. (1995). FEMS Microbiology Letters, 132(1–2), 79–83.

    Article  CAS  Google Scholar 

  23. Dahl, M. K., Schmiedel, D., & Hillen, W. (1995). Journal of Bacteriology, 177(19), 5467–5472.

    CAS  Google Scholar 

  24. Schmiedel, D., & Hillen, W. (1996). Molecular and General Genetics, 250(3), 259–266.

    CAS  Google Scholar 

  25. Heap, J. T., Pennington, O. J., Cartman, S. T., & Minton, N. P. (2009). Journal of Microbiological Methods, 78, 79–85.

    Article  CAS  Google Scholar 

  26. Jiang, Y., Xu, C., Dong, F., Yang, Y., Jiang, W., & Yang, S. (2009). Metabolic Engineering, 11(4–5), 284–291.

    Article  CAS  Google Scholar 

  27. Han, B., Ujor, V., Lai, L. B., Gopalan, V., & Ezehi, T. C. (2013). Applied and Environmental Microbiology, 79(1), 282–293.

    Article  CAS  Google Scholar 

  28. Li, J., Zhao, J. B., Zhao, M., Yang, Y. L., Jiang, W. H., & Yang, S. (2010). Letters in Applied Microbiology, 50(4), 373–379.

    Article  CAS  Google Scholar 

  29. Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A., van Dijken, J. P., & Pronk, J. T. (2005). FEMS Yeast Research, 5(10), 925–934.

    Article  CAS  Google Scholar 

  30. Shao, L., Hu, S., Yang, Y., Gu, Y., Chen, J., Yang, Y., Jiang, W., & Yang, S. (2007). Cell Research, 17(11), 963–965.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31270140), the Knowledge Innovation Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences(2012KIP509), the Ministry of Science and Technology of China (2012BAD32B07, 2011AA02A208, and 2012CB721105), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-J-12, KSCX2-EW-G-13-5, and KSCX2-EW-G-1). We thank Eleftherios T. Papoutsakis (University of Delaware, Newark, USA) for offering plasmids pIMP1-Pptb and Shandong Longlive Bio-technology Co. Ltd. for providing xylose mother liquor. Dr. Yu Jiang gratefully acknowledges the support of SA-SIBS Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Jiang or Sheng Yang.

Additional information

Zhin Li and Han **ao contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., **ao, H., Jiang, W. et al. Improvement of Solvent Production from Xylose Mother Liquor by Engineering the Xylose Metabolic Pathway in Clostridium acetobutylicum EA 2018. Appl Biochem Biotechnol 171, 555–568 (2013). https://doi.org/10.1007/s12010-013-0414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0414-9

Keywords

Navigation