Log in

Purification and Characterization of a Low Molecular Weight of β-Mannanase from Penicillium occitanis Pol6

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The highest β-mannanase activity was produced by Penicillium occitanis Pol6 on flour of carob seed, whereas starch-containing medium gave lower enzymes titles. The low molecular weight enzyme was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography procedures. The purified β-mannanase (ManIII) has been identified as a glycoprotein (carbohydrate content 5%) with an apparent molecular mass of 18 kDa. It was active at 40 °C and pH 4.0. It was stable for 30 min at 70 °C and has a broad pH stability (2.0–12.0). ManIII showed K m, V max, and K cat values of 17.94 mg/ml, 93.52 U/mg, and 28.13 s−1 with locust bean gum as substrate, respectively. It was inhibited by mannose with a K I of 0.610−3 mg/ml. ManIII was activated by CuSO4 and CaCl2 (2.5 mM). However, in presence of 2.5 mM Co2+, its activity dropped to 60% of the initial activity. Both N-terminal and internal amino acid sequences of ManIII presented no homology with mannanases of glycosides hydrolases. During incubation with locust bean gum and Ivory nut mannan, the enzyme released mainly mannotetraose, mannotriose, and mannobiose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Timell, T. E. (1967). Wood Science and Technology, 1, 45–70. doi:10.1007/BF00592255.

    Article  CAS  Google Scholar 

  2. Filho, E. X. F. (1998). Recent Research Developments in Microbiology, 2, 165–176.

    Google Scholar 

  3. Singh, S., Madlala, A. M., & Prior, B. A. (2003). FEMS Microbiology Reviews, 27, 3–16. doi:10.1016/S0168-6445(03)00018-4.

    Article  CAS  Google Scholar 

  4. Xu, B., Hägglund, P., Stalbrand, H., & Janson, J. C. (2002). Journal of Biotechnology, 92, 267–277. doi:10.1016/S0168-1656(01)00367-4.

    Article  CAS  Google Scholar 

  5. Duffaud, G. D., Mc cutchen, C. M., Leduc, P., Parker, K. N., & Kelly, R. M. (1997). Applied and Environmental Microbiology, 63, 169–177.

    CAS  Google Scholar 

  6. Gübitz, G. M., Hayn, M., Sommerauer, M., & Steiner, W. (1996). Bioresource Technology, 58, 127–135. doi:10.1016/S0960-8524(96)00093-4.

    Article  Google Scholar 

  7. Stalbrand, H., Suka-aho, M., Tenkanen, M., & Viikari, L. (1993). Journal of Biotechnology, 29, 229–242. doi:10.1016/0168-1656(93)90055-R.

    Article  Google Scholar 

  8. Civas, A., Eberhard, R., Le Dizet, P., & Petek, F. (1984). Biochemical Journal, 219, 857–863.

    CAS  Google Scholar 

  9. Yamazaki, N., Sinner, M., & Dietrichs, H. H. (1976). Holzforschung, 30, 101–109.

    Article  CAS  Google Scholar 

  10. Ooi, T., & Kikuchi, D. (1995). World Journal of Microbiology & Biotechnology, 11, 310–314. doi:10.1007/BF00367106.

    Article  CAS  Google Scholar 

  11. Nicolas, P., Raetz, E., Reymond, S., & Sauvegeat, J. L. (1995). EP0676145, A1.

  12. Dekker, R. F. H. (1979). In J. M. V. Blanshard & J. R. Mitchell (Eds.), Polysaccharides in food (pp. 93–108). London: Butterworth.

    Google Scholar 

  13. Christgau, S., Andersen, L. N., Kauppinen, S., Heldt-Hansen, H. P., & Dalboege, H. (1994a). Patent Novo-Nordisk, 9425576.

  14. Akino, T., Nakamura, N., & Horiksoshi, K. (1998). Agricultural and Biological Chemistry, 52, 773–779.

    Google Scholar 

  15. Oda, Y., Komaki, T., & Tonomura, K. (1993). Journal of Fermentation and Bioengineering, 76, 14–18. doi:10.1016/0922-338X(93)90045-A.

    Article  CAS  Google Scholar 

  16. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). FEMS Microbiology Reviews, 13, 335–350. doi:10.1111/j.1574-6976.1994.tb00053.x.

    Article  CAS  Google Scholar 

  17. Cuevas, W. A., Kantelinen, A., Tanner, P., Bodie, B., & Leskinen, S. (1996). In E. Srebtonik & K. Messner (Eds.), Biotechnology in the pulp and paper industry (pp. 123–126). Vienna: Facultas-Universităts.

    Google Scholar 

  18. Gubitz, G. M., Haltrich, D., Latal, B., & Steiner, W. (1997). Applied Microbiology and Biotechnology, 47, 658–662. doi:10.1007/s002530050991.

    Article  CAS  Google Scholar 

  19. Henrissat, B., & Bairoch, A. (1993). The Biochemical Journal, 293, 781–788.

    CAS  Google Scholar 

  20. Koshland, P. J. (1953). Biological Reviews of the Cambridge Philosophical Society, 28, 416–436. doi:10.1111/j.1469-185X.1953.tb01386.x.

    Article  CAS  Google Scholar 

  21. Gibbs, M. D., Saul, D. J., Luthi, E., & Bergquist, P. L. (1992). Applied and Environmental Microbiology, 58, 3864–3867.

    CAS  Google Scholar 

  22. Tunnicliffe, R. B., Bolam, D. N., Pell, G., Gilbert, H. J., & Williamson, M. P. (2005). Journal of Molecular Biology, 347, 287–296. doi:10.1016/j.jmb.2005.01.038.

    Article  CAS  Google Scholar 

  23. Park, G. G., Kusakabe, I., Komatsu, Y., Kobayashi, H., Yasui, T., & Murakami, K. (1987). Agricultural and Biological Chemistry, 51, 2709–2716.

    CAS  Google Scholar 

  24. Ademark, P., Varga, A., Medve, J., Harjunpaa, V., Drakenberg, T., Tjerneld, F., et al. (1998). Journal of Biotechnology, 63, 199–210. doi:10.1016/S0168-1656(98)00086-8.

    Article  CAS  Google Scholar 

  25. Arisan-Atac, I., Hodits, R., Kristufek, D., & Kubicek, C. P. (1993). Applied Microbiology and Biotechnology, 39, 58–62.

    CAS  Google Scholar 

  26. Ferreira, H. M., & Filho, E. X. F. (2004). Carbohydrate Polymers, 57, 23–29. doi:10.1016/j.carbpol.2004.02.010.

    Article  CAS  Google Scholar 

  27. Gübitz, G. M., Hayn, M., Urbanz, G., & Steiner, W. (1996). Journal of Biotechnology, 45, 165–172. doi:10.1016/0168-1656(95)00158-1.

    Article  Google Scholar 

  28. Hadj Taieb, N., Ellouz, S., Kammoun, A., & Ellouz, R. (1992). Applied Microbiology and Biotechnology, 37, 197–201. doi:10.1007/BF00178170.

    Article  CAS  Google Scholar 

  29. Ellouz Chaabouni, S., Belguith, H., Hsairi, I., Mkad, M., & Ellouz, R. (1995). Applied Microbiology and Biotechnology, 43, 267–269. doi:10.1007/BF00172822.

    Article  CAS  Google Scholar 

  30. Limem, F., Ellouz, S., Ghriri, R., & Marzouki, N. (1995). Enzyme and Microbial Technology, 17, 340–346. doi:10.1016/0141-0229(94)00033-6.

    Article  Google Scholar 

  31. Bhiri, F., Ellouz Chaabouni, S., Limam, F., Ghriri, R., & Marzouki, N. (2008). Applied Biochemistry and Biotechnology, 149, 169–182. doi:10.1007/s12010-008-8146-y.

    Article  CAS  Google Scholar 

  32. Ellouz Chaabouni, S., Limam, F., Mechichi, T., & Marzouki, N. (2005). Applied Biochemistry and Biotechnology, 125, 99–112. doi:10.1385/ABAB:125:2:099.

    Article  Google Scholar 

  33. Hägglund, P., Eriksson, T., Collén, A., Nerinckx, W., Claeyssens, M., & Stålbrand, H. (2003). Journal of Biotechnology, 101, 37–48. doi:10.1016/S0168-1656(02)00290-0.

    Article  Google Scholar 

  34. Jain, S., Parriche, M., Durand, H., & Tiraby, G. (1990). Enzyme and Microbial Technology, 12, 691–696. doi:10.1016/0141-0229(90)90009-F.

    Article  CAS  Google Scholar 

  35. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  36. Rättö, M., & Poutanen, K. (1988). Biotechnology Letters, 10, 661–664. doi:10.1007/BF01024721.

    Article  Google Scholar 

  37. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  38. Spiro, R. (1966). Methods in Enzymology, 256, 3–26. doi:10.1016/0076-6879(66)08005-4.

    Article  Google Scholar 

  39. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  40. Hewick, R. M., Hunkapiller, M. W., Hood, L. E., & Dreyer, W. J. (1981). The Journal of Biological Chemistry, 256, 7990–7997.

    CAS  Google Scholar 

  41. Macaron, R., Acebal, C., Castillon, M. P., & Claeyssens, M. (1996). Biotechnology Letters, 18, 599–602. doi:10.1007/BF00140210.

    Article  Google Scholar 

  42. Sachslehner, A., Nidetzky, B., Kulbe, K. D., & Haltrich, D. (1998). Applied and Environmental Microbiology, 64, 594–600.

    CAS  Google Scholar 

  43. Gubitz, G. M., & Steiner, W. (1995). ACS Symposium Series. American Chemical Society, 618, 319–331.

    Article  Google Scholar 

  44. Puchart, V., Vrsanska, M., Svoboda, P., Pohl, J., Ogel, Z., & Biely, P. (2004). Biochimica et Biophysica Acta, 1674, 239–250.

    CAS  Google Scholar 

  45. Torrie, J. P., Senior, D. J., & Saddler, J. N. (1990). Applied Microbiology and Biotechnology, 34, 303–307. doi:10.1007/BF00170047.

    Article  CAS  Google Scholar 

  46. Sachslehner, A., & Haltrich, D. (1999). FEMS Microbiology Letters, 177, 47–55.

    CAS  Google Scholar 

  47. Setati, M. E., Ademark, P., van Zyl, W. H., Hahn-hagerdal, B., & Stalbrand, H. (2001). Protein Expression and Purification, 21, 105–114. doi:10.1006/prep.2000.1371.

    Article  CAS  Google Scholar 

  48. Zhengaiang, J., Yun, W., Daoyi, L., Lite, L., ****, C., & Isao, K. (2006). Carbohydrate Polymers, 66, 88–96. doi:10.1016/j.carbpol.2006.02.030.

    Article  Google Scholar 

  49. Kusakabe, I., Park, G. G., Kumita, N., Yasui, T., & Murakami, K. (1988). Agricultural and Biological Chemistry, 52, 519–524.

    CAS  Google Scholar 

  50. Kobayashi, Y., Echigen, R., Mada, M., & Mutai, M. (1987). In T. Mitsuoka (Ed.), Intestinal flora and food factors (pp. 79–87). Tokyo: Gakkai Shuppan Centre.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported in part by “Ministére de la recheche scientifique, de la Technologie et du dévelopement de compétences”. We express our gratitude to Prof. G. Tiraby and Dr. H. Durand (Cayla Company, France) for kindly supplying the P. occitanis (Pol 6) strain used in this work. We are also grateful to Prof. Radhouane Ellouz, Prof. Hamadi Attia, Prof. Youssef Gargouri, Prof. Mongi Feki, and Prof. Jalel Bouzid, ENIS, Sfax, Tunisia, for their stimulating and beneficial discussion. We extend our gratitude to Prof. Hafed Mejdoub (FSS, Sfax, Tunisia) for the determination of the N-terminal sequence and to Mr Jamil Jaoua, Head of the English Unit at the Sfax Faculty of Science, for having proofread this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semia Ellouz Chaabouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blibech, M., Ghorbel, R.E., Fakhfakh, I. et al. Purification and Characterization of a Low Molecular Weight of β-Mannanase from Penicillium occitanis Pol6. Appl Biochem Biotechnol 160, 1227–1240 (2010). https://doi.org/10.1007/s12010-009-8630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8630-z

Keywords

Navigation