Log in

Isolation and Characterization of an Atypical LEA Protein Coding cDNA and its Promoter from Drought-Tolerant Plant Prosopis juliflora

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. Despite the wealth of information on abiotic stress and stress tolerance in plants, many aspects still remain unclear. Prosopis juliflora is a hardy plant reported to be tolerant to drought, salinity, extremes of soil pH, and heavy metal stress. In this paper, we report the isolation and characterization of the complementary DNA clone for an atypical late embryogenesis abundant (LEA) protein (Pj LEA3) and its putative promoter sequence from P. juliflora. Unlike typical LEA proteins, rich in glycine, Pj LEA3 has alanine as the most abundant amino acid followed by serine and shows an average negative hydropathy. Pj LEA3 is significantly different from other LEA proteins in the NCBI database and shows high similarity to indole-3 acetic-acid-induced protein ARG2 from Vigna radiata. Northern analysis for Pj LEA3 in P. juliflora leaves under 90 mM H2O2 stress revealed up-regulation of transcript at 24 and 48 h. A 1.5-kb fragment upstream the 5′ UTR of this gene (putative promoter) was isolated and analyzed in silico. The possible reasons for changes in gene expression during stress in relation to the host plant’s stress tolerance mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyer, J. S. (1982). Science, 218, 443–448. doi:10.1126/science.218.4571.443.

    Article  Google Scholar 

  2. Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). In W. Gruissem, B. Buchannan, & R. Jones (Eds.), Responses to abiotic stresses pp. 1158–1249. Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  3. Burkart, A., & Simpson, B. B. (1977). In B. B. Simpson (Eds.), Mesquite: Its biology in two desert ecosystems pp. 201–215. Stroudsburg, Pennsylvania, USA: Dowden, Hutchinson and Ross.

    Google Scholar 

  4. Drake, H. (1993). Trees for dry lands p. 370. New York: International Scientific Publishing.

    Google Scholar 

  5. Geilfus, F. (1994). In Enda-Caribe-Centro Agronómico Tropical de Investigación y Enseñanza (vol. 2, p. 597).

  6. Shirke, P. A., & Pathre, U. V. (2004). Journal of Experimental Botany, 55(405), 2111–2120. doi:10.1093/jxb/erh229.

    Article  CAS  Google Scholar 

  7. Sinha, S., Rai, U. N., Bhatt, K., Pandey, K., & Gupta, A. K. (2005). Environmental Monitoring and Assessment, 102, 447–457. doi:10.1007/s10661-005-6397-4.

    Article  CAS  Google Scholar 

  8. SenthilKumar, P., Prince, W. S., Sivakumar, S., & Subbhuraam, C. V. (2005). Chemosphere, 60(10), 1493–1496. doi:10.1016/j.chemosphere.2005.02.022.

    Article  CAS  Google Scholar 

  9. Dure, L., Greenway, S. C., & Galau, G. A. (1981). Biochemistry, 20, 4162–4168. doi:10.1021/bi00517a033.

    Article  CAS  Google Scholar 

  10. Grzelczak, Z. F., Sattolo, M. H., Hanley-Bowdoin, L. K., Kennedy, T. D., & Lane, B. G. (1982). Canadian Journal of Biochemistry, 60, 389–397.

    Article  CAS  Google Scholar 

  11. Galau, G. A., Hughes, D. W., & Dure, L. (1986). Plant Molecular Biology, 7, 155–170.

    Article  CAS  Google Scholar 

  12. Bray, E. A. (1993). Plant Physiology, 103, 1035.

    CAS  Google Scholar 

  13. Cumming, A. C. (1999). In P. R. Shewry, & R. Casey (Eds.), Seed proteins (pp. 753–780). Dordrecht: Kluwer

  14. Roberts, J. K., DeSimone, N. A., Lingle, W. L., & Dure, L. (1993). The Plant Cell, 5, 769–780.

    Article  CAS  Google Scholar 

  15. Hughes, D. W., & Galau, G. A. (1989). Genes & Development, 3, 358–369. doi:10.1101/gad.3.3.358.

    Article  CAS  Google Scholar 

  16. Welin, V., Olson, A., Nylander, M., & Palva, E. T. (1994). Plant Molecular Biology, 26, 131–144. doi:10.1007/BF00039526.

    Article  CAS  Google Scholar 

  17. Ingram, J., & Bartels, D. (1996). Annual Review of Plant Biology, 47, 377–403. doi:10.1146/annurev.arplant.47.1.377.

    Article  CAS  Google Scholar 

  18. Wise, M. J. (2003). BMC Bioinformatics, 4, 52 1040.

    Article  Google Scholar 

  19. George, S., Venkataraman, G., & Parida, A. (2007). Genome, 50(5), 470–478. doi:10.1139/G07-014.

    Article  CAS  Google Scholar 

  20. Emanuelsson, O., Nielsen, H., Brunak, S., & von Heijne, G. (2000). Journal of Molecular Biology, 300, 1005–1016. doi:10.1006/jmbi.2000.3903.

    Article  CAS  Google Scholar 

  21. Nielsen, H., Engelbrecht, J., Brunak, S., & von Heijne, G. (1997). Protein Engineering, 10, 1–6. doi:10.1093/protein/10.1.1.

    Article  CAS  Google Scholar 

  22. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005); In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). New York: Humana.

  23. Tusnády, G. E., & Simon, I. (1998). Journal of Molecular Biology, 283, 489–506. doi:10.1006/jmbi.1998.2107.

    Article  Google Scholar 

  24. Tusnády, G. E., & Simon, I. (2001). Bioinformatics (Oxford, England), 17, 849–850. doi:10.1093/bioinformatics/17.9.849.

    Article  Google Scholar 

  25. Bauer, M. A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., & Gwadz, M. (2007). Nucleic Acids Research, 35, 237–240. doi:10.1093/nar/gkl951.

    Article  Google Scholar 

  26. Chomczynski, P., & Sacchi, N. (1987). Analytical Biochemistry, 162, 156–159. doi:10.1016/0003-2697(87)90021-2.

    Article  CAS  Google Scholar 

  27. Mehta, P. A., Sivaprakash, K., Parani, M., Venkataraman, G., & Parida, A. K. (2005). Theoretical and Applied Genetics, 110, 416–424. doi:10.1007/s00122-004-1801-y.

    Article  CAS  Google Scholar 

  28. Liu, Y. G., Mitsukawa, N., Oosumi, T., & Whittier, R. F. (1995). The Plant Journal, 8, 457–463. doi:10.1046/j.1365-313X.1995.08030457.x.

    Article  CAS  Google Scholar 

  29. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Nucleic Acids Research, 27, 97–300. doi:10.1093/nar/27.1.297.

    Article  Google Scholar 

  30. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  31. Jefferson, R. A. (1987). Plant Molecular Biology Reporter, 5, 387–405. doi:10.1007/BF02667740.

    Article  CAS  Google Scholar 

  32. Galau, G. A., Wang, H. Y.-C., & Hughes, D. W. (1993). Plant Physiology, 101, 695–696. doi:10.1104/pp.101.2.695.

    Article  CAS  Google Scholar 

  33. Hundertmark, M., & Hincha, D. K. (2008). BMC Genomics, 9, 118. doi:10.1186/1471-2164-9-118.

    Article  CAS  Google Scholar 

  34. Kyte, J., & Doolittle, R. (1982). Journal of Molecular Biology, 157, 105–132. doi:10.1016/0022-2836(82)90515-0.

    Article  CAS  Google Scholar 

  35. Zegzouti, H., Jones, B., Marty, C., Lelievre, J. M., Latche, A., & Pech, J. C. (1997). Plant Molecular Biology, 35(6), 847–854. doi:10.1023/A:1005860302313.

    Article  CAS  Google Scholar 

  36. Simpson, S. D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Plant Journal, 33, 259–270. doi:10.1046/j.1365-313X.2003.01624.x.

    Article  CAS  Google Scholar 

  37. Marcotte, W. R., Russell, S. H., & Quatrano, R. S. (1989). The Plant Cell, 1, 969–976.

    Article  CAS  Google Scholar 

  38. Kaplan, B., Davydov, O., Knight, H., Galon, Y., Knight, M. R., & Fluhr, R. (2006). The Plant Cell, 18, 2733–2748. doi:10.1105/tpc.106.042713.

    Article  CAS  Google Scholar 

  39. Xue, G. P. (2002). Nucleic Acids Research, 30, e77. doi:10.1093/nar/gnf076.

    Article  Google Scholar 

  40. Itzhaki, H., Maxson, J. M., & Woodson, W. R. (1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 8925–8929. doi:10.1073/pnas.91.19.8925.

    Article  CAS  Google Scholar 

  41. Brown, R. L., Kazan, K., McGrath, K. C., Maclean, D. J., & Manners, J. M. (2003). Plant Physiology, 132, 1020–1032. doi:10.1104/pp.102.017814.

    Article  CAS  Google Scholar 

  42. Baker, S. S., Wilhelm, K. S., & Thomashow, M. F. (1994). Plant Molecular Biology, 24, 701–713. doi:10.1007/BF00029852.

    Article  CAS  Google Scholar 

  43. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). The Plant Cell, 15, 63–78. doi:10.1105/tpc.006130.

    Article  CAS  Google Scholar 

  44. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., & Weisshaar, B. (2005). Plant Molecular Biology, 57, 155–171. doi:10.1007/s11103-004-6910-0.

    Article  CAS  Google Scholar 

  45. Gowik, U., Burscheidt, J., Akyildiz, M., Schlue, U., Koczor, M., & Streubel, M. (2004). The Plant Cell, 16, 1077–1090. doi:10.1105/tpc.019729.

    Article  CAS  Google Scholar 

  46. Stougaard, J., Jorgensen, J. E., Christensen, T., Kuhle, A., & Marcker, K. A. (1990). Molecular & General Genetics, 220, 353–360. doi:10.1007/BF00391738.

    Article  CAS  Google Scholar 

  47. Bate, N., & Twell, D. (1998). Plant Molecular Biology, 37, 859–869. doi:10.1023/A:1006095023050.

    Article  CAS  Google Scholar 

  48. Elmayan, T., & Tepfer, M. (1995). Transgenic Research, 4, 388–396. doi:10.1007/BF01973757.

    Article  CAS  Google Scholar 

  49. Yanagisawa, S. (2000). The Plant Journal, 21, 281–288. doi:10.1046/j.1365-313x.2000.00685.x.

    Article  CAS  Google Scholar 

  50. Zhou, D. X. (1999). Trends in Plant Science, 4, 210–214. doi:10.1016/S1360-1385(99)01418-1.

    Article  Google Scholar 

  51. Piechulla, B., Merforth, N., & Rudolph, B. (1998). Plant Molecular Biology, 38, 655–662. doi:10.1023/A:1006094015513.

    Article  CAS  Google Scholar 

  52. Kim, S. Y., Chung, H. J., & Thomas, T. L. (1997). The Plant Journal, 11, 1237–1251. doi:10.1046/j.1365-313X.1997.11061237.x.

    Article  CAS  Google Scholar 

  53. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). Plant Physiology, 148, 6–24. doi:10.1104/pp.108.120725.

    Article  CAS  Google Scholar 

  54. Baker, J., Steele, C., & Dure, L. (1988). Plant Molecular Biology, 11, 277–291. doi:10.1007/BF00027385.

    Article  CAS  Google Scholar 

  55. Cuming, A. C. (1999). LEA proteins. In R. Casey & P. R. Shewry (Eds.), Seed proteins (pp. 753–780). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  56. Kim, H. S., Lee, J. H., Kim, J. J., Kim, C. H., Jun, S. S., & Hong, Y. N. (2005). Gene, 3(344), 115–123. doi:10.1016/j.gene.2004.09.012.

    Article  CAS  Google Scholar 

  57. Goyal, K., Walton, L. J., & Tunnacliffe (2005). Biochemical Journal, 388, 151–157, (15).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out with a grant from Department of Biotechnology (DBT), Government of India. Ms. Suja George is a Senior Research Fellow of the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Parida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, S., Usha, B. & Parida, A. Isolation and Characterization of an Atypical LEA Protein Coding cDNA and its Promoter from Drought-Tolerant Plant Prosopis juliflora . Appl Biochem Biotechnol 157, 244–253 (2009). https://doi.org/10.1007/s12010-008-8398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8398-6

Keywords

Navigation