Log in

Optimisation of part orientation and design of support structures in laser powder bed fusion

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Part orientation and support structures are crucial to the quality of metal parts by laser powder bed fusion. Computer-aided solutions for part orientation can be used to support users during the process preparation. In this study, an original computer-aided approach to prepare parts for laser powder bed fusion was formulated and implemented. The proposed method consists of multi-objective optimisation of part orientation and a novel strategy for the simultaneous design of support structures. The automated part orientation optimisation considers both global and local objectives defined by the user. For this purpose, penalty functions measuring the building time, support volume, part distortion, surface roughness and supports contact points are adopted. Unlike in existing methods, the user has the opportunity to define the importance of these aspects in different regions of the part. Such functions are then optimised through a genetic algorithm. The proposed approach was applied to a real product imposing three different sets of objectives. The tested case studies were solved in less than 10 min, providing solutions that satisfied the imposed aims and constraints. Specifically, the results demonstrated that the orientation optimisation can reduce the building time by 68.1% or the material consumption by 66.8%, depending on user requirements. It was also shown how the proposed method can be used to minimise the surface and dimensional error of manufactured parts. The proposed approach allows to manually define the specific design requirements and translate them in terms of manufacturing decisions. This contributes to establishing a fruitful interaction between the user and the developed software during the process design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Please, contact the authors if you are interested in the raw data required to reproduce these findings that are available to download.

References

  1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143(February), 172 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  2. Ali, M.H., Batai, S., Sarbassov, D.: 3D printing: a critical review of current development and future prospects. Rapid Prototyp. J. 25(6), 1108 (2019). https://doi.org/10.1108/RPJ-11-2018-0293

    Article  Google Scholar 

  3. Briard, T., Segonds, F., Zamariola, N.: G-DfAM: a methodological proposal of generative design for additive manufacturing in the automotive industry. Int. J. Interact. Des. Manuf. 14(3), 875 (2020). https://doi.org/10.1007/s12008-020-00669-6

    Article  Google Scholar 

  4. Haghdadi, N., Laleh, M., Moyle, M., Primig, S.: Additive manufacturing of steels: a review of achievements and challenges. J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-05109-0

    Article  Google Scholar 

  5. Bhavar, V., Kattire, P., Patil, V., Khot, S., Gujar, K., Singh, R.: Additive Manufacturing Handbook: Product Development for the Defense Industry (September), p. 251. CRC Press, Boca Raton (2017). https://doi.org/10.1201/9781315119106

    Book  Google Scholar 

  6. Zitelli, C., Folgarait, P., Di Schino, A.: Laser powder bed fusion of stainless steel grades: a review. Metals (2019). https://doi.org/10.3390/met9070731

    Article  Google Scholar 

  7. Vock, S., Klöden, B., Kirchner, A., Weißgärber, T., Kieback, B.: Powders for powder bed fusion: a review. Prog. Addit. Manuf. 4(4), 383 (2019). https://doi.org/10.1007/s40964-019-00078-6

    Article  Google Scholar 

  8. Singh, R., Gupta, A., Tripathi, O., Srivastava, S., Singh, B., Awasthi, A., Rajput, S.K., Sonia, P., Singhal, P., Saxena, K.K.: Powder bed fusion process in additive manufacturing: an overview. Mater. Today Proc. 26, 3058 (2019). https://doi.org/10.1016/j.matpr.2020.02.635

    Article  Google Scholar 

  9. Moshiri, M., Candeo, S., Carmignato, S., Mohanty, S., Tosello, G.: Benchmarking of laser powder bed fusion machines. J. Manuf. Mater. Process. 3, 85 (2019). https://doi.org/10.3390/jmmp3040085

    Article  Google Scholar 

  10. Khorasani, A.M., Gibson, I., Veetil, J.K., Ghasemi, A.H.: A review of technological improvements in laser-based powder bed fusion of metal printers. Int. J. Adv. Manuf. Technol. 108(1–2), 191 (2020). https://doi.org/10.1007/s00170-020-05361-3

    Article  Google Scholar 

  11. Samantaray, M., Thatoi, D.N., Sahoo, S.: Modeling and optimization of process parameters for laser powder bed fusion of AlSi10Mg alloy. Lasers Manuf. Mater. Process. 6(4), 356 (2019). https://doi.org/10.1007/s40516-019-00099-7

    Article  Google Scholar 

  12. Oliveira, J.P., LaLonde, A.D., Ma, J.: Processing parameters in laser powder bed fusion metal additive manufacturing. Mater. Des. 193, 1 (2020). https://doi.org/10.1016/j.matdes.2020.108762

    Article  Google Scholar 

  13. Nandy, J., Sarangi, H., Sahoo, S.: A review on direct metal laser sintering: process features and microstructure modeling. Lasers Manuf. Mater. Process. (2019). https://doi.org/10.1007/s40516-019-00094-y

    Article  Google Scholar 

  14. Yao, Y., Wang, K., Wang, X., Li, L., Cai, W., Kelly, S., Esparragoza, N., Rosser, M., Yan, F.: Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: the effect of build orientation and height. J. Mater. Res. 35(15), 2065 (2020). https://doi.org/10.1557/jmr.2020.126

    Article  Google Scholar 

  15. Gor, M., Soni, H., Wankhede, V., Sahlot, P., Grzelak, K., Szachgluchowicz, I., Kluczyński, J.: A critical review on effect of process parameters on mechanical and microstructural properties of powder-bed fusion additive manufacturing of ss316l. Materials (2021). https://doi.org/10.3390/ma14216527

    Article  Google Scholar 

  16. Kumar, M.S., Javidrad, H.R., Shanmugam, R., Ramoni, M., Adediran, A.A., Pruncu, C.I.: Impact of print orientation on morphological and mechanical properties of L-PBF based AlSi7Mg parts for aerospace applications. Silicon (2021). https://doi.org/10.1007/s12633-021-01474-w

    Article  Google Scholar 

  17. Piscopo, G., Salmi, A., Atzeni, E.: On the quality of unsupported overhangs produced by laser powder bed fusion. Int. J. Manuf. Res. 14(2), 198 (2019). https://doi.org/10.1504/IJMR.2019.100012

    Article  Google Scholar 

  18. Zhang, Y., Yang, S., Zhao, Y.F.: Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing—a survey. Int. J. Adv. Manuf. Technol. 110(1–2), 57 (2020). https://doi.org/10.1007/s00170-020-05825-6

    Article  Google Scholar 

  19. C.J. Montgomery, B.S.M. Engineering, M.S.M. Engineering (December) (2017)

  20. Paudel, B.J., Thompson, S.M.: Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference (2019)

  21. Kozior, T., Bochnia, J.: The influence of printing orientation on surface texture parameters in powder bed fusion technology with 316L steel. Micromachines (2020). https://doi.org/10.3390/MI11070639

    Article  Google Scholar 

  22. Di Angelo, L., Di Stefano, P., Guardiani, E.: Search for the optimal build direction in additive manufacturing technologies: a review. J. Manuf. Mater. Process. 4(3), 71 (2020). https://doi.org/10.3390/jmmp4030071

    Article  Google Scholar 

  23. Cloots, M., Spierings, A., Wegener, K.: Solid Freeform Fabrication Symposium, pp. 631–643 (2013)

  24. Alexander, P., Allen, S., Dutta, D.: Part orientation and build cost determination in layered manufacturing. Comput. Aided Des. 30(5), 343 (1998). https://doi.org/10.1016/S0010-4485(97)00083-3

    Article  Google Scholar 

  25. Costabile, G., Fera, M., Fruggiero, F., Lambiase, A., Pham, D.: Cost models of additive manufacturing: a literature review. Int. J. Ind. Eng. Comput. 8(2), 263 (2016). https://doi.org/10.5267/j.ijiec.2016.9.001

    Article  Google Scholar 

  26. Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Rosamond, E., Hague, R.: Transparency built-in: energy consumption and cost estimation for additive manufacturing Baumers et al. energy and cost estimation for additive manufacturing. J. Ind. Ecol. 17(3), 418 (2013). https://doi.org/10.1111/j.1530-9290.2012.00512.x

    Article  Google Scholar 

  27. Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., Salminen, A.: Cost estimation of laser additive manufacturing of stainless steel. Phys. Procedia 78(August), 388 (2015). https://doi.org/10.1016/j.phpro.2015.11.053

    Article  Google Scholar 

  28. Pham, D.T., Wang, X.: Prediction and reduction of build times for the selective laser sintering process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 214(6), 425 (2000). https://doi.org/10.1243/0954405001517739

    Article  Google Scholar 

  29. Giannatsis, J., Dedoussis, V., Laios, L.: A study of the build-time estimation problem for Stereolithography systems. Robot. Comput. Integr. Manuf. 17(4), 295 (2001). https://doi.org/10.1016/S0736-5845(01)00007-2

    Article  Google Scholar 

  30. Rickenbacher, L., Spierings, A., Wegener, K.: An integrated cost-model for selective laser melting (SLM). Rapid Prototyp. J. 19(3), 208 (2013). https://doi.org/10.1108/13552541311312201

    Article  Google Scholar 

  31. Di Angelo, L., Di Stefano, P.: A neural network-based build time estimator for layer manufactured objects. Int. J. Adv. Manuf. Technol. 57(1–4), 215 (2011). https://doi.org/10.1007/s00170-011-3284-8

    Article  Google Scholar 

  32. Calignano, F.: Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys. Prototyp. 13(2), 97 (2018). https://doi.org/10.1080/17452759.2018.1426368

    Article  Google Scholar 

  33. Ali, U., Fayazfar, H., Ahmed, F., Toyserkani, E.: Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing. Vacuum (2020). https://doi.org/10.1016/j.vacuum.2020.109314

    Article  Google Scholar 

  34. Dmitriyev, T., Manakov, S.: Digital modeling accuracy of direct metal laser sintering process. Eurasian Chem. Technol. J. 22(2), 123 (2020). https://doi.org/10.18321/ectj959

    Article  Google Scholar 

  35. Strano, G., Hao, L., Everson, R.M., Evans, K.E.: Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 213(4), 589 (2013). https://doi.org/10.1016/j.jmatprotec.2012.11.011

    Article  Google Scholar 

  36. Wang, D., Liu, Y., Yang, Y., **ao, D.: Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyp. J. 22(4), 706 (2016). https://doi.org/10.1108/RPJ-06-2015-0078

    Article  Google Scholar 

  37. Fox, J.C., Moylan, S.P., Lane, B.M.: Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45, 131 (2016). https://doi.org/10.1016/j.procir.2016.02.347

    Article  Google Scholar 

  38. Guo, C., Li, S., Shi, S., Li, X., Hu, X., Zhu, Q., Ward, R.M.: Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion. J. Mater. Process. Technol. 285(December 2019), 116788 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116788

    Article  Google Scholar 

  39. Rott, S., Ladewig, A., Friedberger, K., Casper, J., Full, M., Schleifenbaum, J.H.: Surface roughness in laser powder bed fusion–interdependency of surface orientation and laser incidence. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101437

    Article  Google Scholar 

  40. Frank, D., Fadel, G.: Expert system-based selection of the preferred direction of build for rapid prototy** processes. J. Intell. Manuf. 6(5), 339 (1995). https://doi.org/10.1007/BF00124677

    Article  Google Scholar 

  41. Lan, P.T., Chou, S.Y., Chen, L.L., Gemmill, D.: Determining fabrication orientations for rapid prototy** with stereolithography apparatus. CAD Comput. Aided Des. 29(1), 53 (1997). https://doi.org/10.1016/S0010-4485(96)00049-8

    Article  Google Scholar 

  42. Leutenecker-Twelsiek, B., Klahn, C., Meboldt, M.: Considering part orientation in design for additive manufacturing. Procedia CIRP 50, 408 (2016). https://doi.org/10.1016/j.procir.2016.05.016

    Article  Google Scholar 

  43. Masood, S.H., Rattanawong, W., Iovenitti, P.: A generic algorithm for a best part orientation system for complex parts in rapid prototy**. J. Mater. Process. Technol. 139(1–3 SPEC), 110 (2003). https://doi.org/10.1016/S0924-0136(03)00190-0

    Article  Google Scholar 

  44. Singhal, S.K., Jain, P.K., Pandey, P.M., Nagpal, A.K.: Optimum part deposition orientation for multiple objectives in SL and SLS prototy**. Int. J. Prod. Res. 47(22), 6375 (2009). https://doi.org/10.1080/00207540802183661

    Article  Google Scholar 

  45. Morgan, H.D., Cherry, J.A., Jonnalagadda, S., Ewing, D., Sienz, J.: Part orientation optimisation for the additive layer manufacture of metal components. Int. J. Adv. Manuf. Technol. 86(5–8), 1679 (2016). https://doi.org/10.1007/s00170-015-8151-6

    Article  Google Scholar 

  46. Nezhad, A.S., Vatani, M., Barazandeh, F., Rahimi, A.R.: Proceedings of the 9th WSEAS International Conference on Simulation, Modelling and Optimization, SMO ’09, 5th WSEAS International Symposium on Grid Computing, Proceedings of the 5th WSEAS International Symposium on Digital Libraries, Proceedings of the 5th WSEAS International Symposium on Data Mining, pp. 36–40 (2009)

  47. Matos, M.A., Rocha, A.M.A., Costa, L.A., Pereira, A.I.: Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11621 LNCS, p. 261 (2019). https://doi.org/10.1007/978-3-030-24302-9

  48. Qin, Y., Qi, Q., Scott, P.J., Jiang, X.: Determination of optimal build orientation for additive manufacturing using Muirhead mean and prioritised average operators. J. Intell. Manuf. 30(8), 3015 (2019). https://doi.org/10.1007/s10845-019-01497-6

    Article  Google Scholar 

  49. Zhang, Y., De Backer, W., Harik, R., Bernard, A.: Build orientation determination for multi-material deposition additive manufacturing with continuous fibers. Procedia CIRP 50, 414 (2016). https://doi.org/10.1016/j.procir.2016.04.119

    Article  Google Scholar 

  50. Khodaygan, S., Golmohammadi, A.H.: Multi-criteria optimization of the part build orientation (PBO) through a combined meta-modeling/NSGAII/TOPSIS method for additive manufacturing processes. Int. J. Interact. Des. Manuf. 12(3), 1071 (2018). https://doi.org/10.1007/s12008-017-0443-7

    Article  Google Scholar 

  51. Mele, M., Campana, G.: Sustainability-driven multi-objective evolutionary orienting in additive manufacturing. Sustain. Prod. Consum. 23, 138 (2020). https://doi.org/10.1016/j.spc.2020.05.004

    Article  Google Scholar 

  52. Huang, R., Dai, N., Cheng, X.: Build orientation optimization for lightweight lattice parts production in selective laser melting by using a multicriteria genetic algorithm. J. Mater. Res. 35(15), 2046 (2020). https://doi.org/10.1557/jmr.2020.124

    Article  Google Scholar 

  53. Das, P., Chandran, R., Samant, R., Anand, S.: Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. Procedia Manuf. 1, 343 (2015). https://doi.org/10.1016/j.promfg.2015.09.041

    Article  Google Scholar 

  54. Ga, B., Gardan, N., Wahu, G.: Methodology for part building orientation in additive manufacturing. Comput. Aided Des. Appl. 16(1), 113 (2018). https://doi.org/10.14733/cadaps.2019.113-128

    Article  Google Scholar 

  55. Golmohammadi, A.H., Khodaygan, S.: A framework for multi-objective optimisation of 3D part-build orientation with a desired angular resolution in additive manufacturing processes. Virtual Phys. Prototyp. 14(1), 19 (2019). https://doi.org/10.1080/17452759.2018.1526622

    Article  Google Scholar 

  56. Mele, M., Campana, G., Monti, G.L.: Intelligent orientation of parts based on defect prediction in multi jet fusion process. Prog. Addit. Manuf. 6(4), 841 (2021). https://doi.org/10.1007/s40964-021-00199-x

    Article  Google Scholar 

  57. Thrimurthulu, K., Pandey, P.M., Reddy, N.V.: Optimum part deposition orientation in fused deposition modeling. Int. J. Mach. Tools Manuf. 44(6), 585 (2004). https://doi.org/10.1016/j.ijmachtools.2003.12.004

    Article  Google Scholar 

  58. Canellidis, V., Giannatsis, J., Dedoussis, V.: Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int. J. Adv. Manuf. Technol. 45(7–8), 714 (2009). https://doi.org/10.1007/s00170-009-2006-y

    Article  Google Scholar 

  59. Phatak, A.M., Pande, S.S.: Optimum part orientation in Rapid Prototy** using genetic algorithm. J. Manuf. Syst. 31(4), 395 (2012). https://doi.org/10.1016/j.jmsy.2012.07.001

    Article  Google Scholar 

  60. Brika, S.E., Zhao, Y.F., Brochu, M., Mezzetta, J.: Multi-objective build orientation optimization for powder bed fusion by laser. J. Manuf. Sci. Eng. Trans. ASME (2017). https://doi.org/10.1115/1.4037570

    Article  Google Scholar 

  61. Mele, M., Campana, G., Lenzi, F., Cimatti, B.: In: Procedia Manufacturing vol. 33, pp. 145–152 (2019). https://doi.org/10.1016/j.promfg.2019.04.019. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068581736&doi=10.1016%2Fj.promfg.2019.04.019&partnerID=40&md5=7db0005b2d50ab61975e9a33c77573a1

  62. Goguelin, S., Dhokia, V., Flynn, J.M.: Bayesian optimisation of part orientation in additive manufacturing. Int. J. Comput. Integr. Manuf. 34(12), 1263 (2021). https://doi.org/10.1080/0951192X.2021.1972466

    Article  Google Scholar 

  63. Matos, M.A., Rocha, A.M.A., Costa, L.A.: Many-objective optimization of build part orientation in additive manufacturing. Int. J. Adv. Manuf. Technol. 112(3–4), 747 (2021). https://doi.org/10.1007/s00170-020-06369-5

    Article  Google Scholar 

  64. Reichwein, J., Kirchner, E.: Part orientation and separation to reduce process costs in additive manufacturing. Proc. Des. Soc. 1(August), 2399 (2021). https://doi.org/10.1017/pds.2021.501

    Article  Google Scholar 

  65. Subbaian Kaliamoorthy, P., Subbiah, R., Bensingh, J., Kader, A., Nayak, S.: Benchmarking the complex geometric profiles, dimensional accuracy and surface analysis of printed parts. Rapid Prototyp. J. 26(2), 319 (2020). https://doi.org/10.1108/RPJ-01-2019-0024

    Article  Google Scholar 

  66. Zhou, Y., Ning, F.: Build orientation effect on geometric performance of curved-surface 316L stainless steel parts fabricated by selective laser melting. J. Manuf. Sci. Eng. Trans. ASME 142(12), 1 (2020). https://doi.org/10.1115/1.4047624

    Article  Google Scholar 

  67. Sahoo, S.: Characterization of effect of support structures in laser additive manufacturing of stainless steel. J. Laser Appl. 33(3), 32011 (2021)

    Article  Google Scholar 

  68. Nandy, J., Sahoo, S., Sarangi, H., Sabat, R.K.: Evaluation of structural and mechanical properties of high strength aluminum alloy components fabricated using laser powder bed fusion process. J. Laser Appl. 33(3), 32009 (2021)

    Article  Google Scholar 

  69. Dareh Baghi, A., Nafisi, S., Hashemi, R., Ebendorff-Heidepriem, H., Ghomashchi, R.: Experimental realisation of build orientation effects on the mechanical properties of truly as-built Ti–6Al–4V SLM parts. J. Manuf. Process. 64(November 2020), 140 (2021). https://doi.org/10.1016/j.jmapro.2021.01.027

    Article  Google Scholar 

  70. AlRedha, S., Shterenlikht, A., Mostafavi, M., Van Gelderen, D., Lopez-Botello, O.E., Reyes, L.A., Zambrano, P., Garza, C.: Effect of build orientation on fracture behaviour of AlSi10Mg produced by selective laser melting. Rapid Prototyp. J. 27(1), 112 (2021). https://doi.org/10.1108/RPJ-02-2020-0041

    Article  Google Scholar 

  71. Wang, C.G., Zhu, J.X., Wang, G.W., Qin, Y., Sun, M.Y., Yang, J.L., Shen, X.F., Huang, S.K.: Effect of building orientation and heat treatment on the anisotropic tensile properties of AlSi10Mg fabricated by selective laser melting. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162665

    Article  Google Scholar 

  72. Bogojevic, N., Ciric-Kostic, S., Vranić, A., Olmi, G., Croccolo, D.: Lecture Notes in Mechanical Engineering (2020)

  73. Pellizzari, M., AlMangour, B., Benedetti, M., Furlani, S., Grzesiak, D., Deirmina, F.: Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel. Theor. Appl. Fract. Mech. (2020). https://doi.org/10.1016/j.tafmec.2020.102634

    Article  Google Scholar 

  74. Paul, R., Anand, S.: Optimal part orientation in rapid manufacturing process for achieving geometric tolerances. J. Manuf. Syst. 30(4), 214 (2011). https://doi.org/10.1016/j.jmsy.2011.07.010

    Article  MathSciNet  Google Scholar 

  75. Moroni, G., Syam, W.P., Petrò, S.: Functionality-based part orientation for additive manufacturing. Procedia CIRP 36, 217 (2015). https://doi.org/10.1016/j.procir.2015.01.015

    Article  Google Scholar 

  76. Qin, Y., Qi, Q., Shi, P., Scott, P.J., Jiang, X.: Automatic generation of alternative build orientations for laser powder bed fusion based on facet clustering. Virtual Phys. Prototyp. 15(3), 307 (2020). https://doi.org/10.1080/17452759.2020.1756086

    Article  Google Scholar 

  77. Qin, Y., Qi, Q., Shi, P., Scott, P.J., Jiang, X.: Status, issues, and future of computer-aided part orientation for additive manufacturing. Int. J. Adv. Manuf. Technol. 115(5–6), 1295 (2021). https://doi.org/10.1007/s00170-021-06996-6

    Article  Google Scholar 

  78. Samant, R., Ranjan, R., Mhapsekar, K., Anand, S.: Octree data structure for support accessibility and removal analysis in additive manufacturing. Addit. Manuf. 22(November 2017), 618 (2018). https://doi.org/10.1016/j.addma.2018.05.031

    Article  Google Scholar 

  79. Mirzendehdel, A.M., Behandish, M., Nelaturi, S.: Optimizing build orientation for support removal using multi-axis machining. Comput. Graph. (Pergamon) 99, 247 (2021). https://doi.org/10.1016/j.cag.2021.07.011

    Article  Google Scholar 

  80. Zeng, K., Pal, D., Teng, C., Stucker, B.E.: Evaluations of effective thermal conductivity of support structures in selective laser melting. Addit. Manuf. 6, 67 (2015). https://doi.org/10.1016/j.addma.2015.03.004

    Article  Google Scholar 

  81. Jiang, J., Stringer, J., Xu, X., Zheng, P.: A benchmarking part for evaluating and comparing support structures of additive manufacturing. In: Proceedings of the International Conference on Progress in Additive Manufacturing, vol. 2018 (June), p. 196 (2018). https://doi.org/10.25341/D42G6H

  82. Hussein, A., Hao, L., Yan, C., Everson, R., Young, P.: Advanced lattice support structures for metal additive manufacturing. J. Mater. Process. Technol. 213(7), 1019 (2013). https://doi.org/10.1016/j.jmatprotec.2013.01.020

    Article  Google Scholar 

  83. Strano, G., Hao, L., Everson, R.M., Evans, K.E.: A new approach to the design and optimisation of support structures in additive manufacturing. Int. J. Adv. Manuf. Technol. 66(9–12), 1247 (2013). https://doi.org/10.1007/s00170-012-4403-x

    Article  Google Scholar 

  84. Vaidya, R., Anand, S.: Optimum support structure generation for additive manufacturing using unit cell structures and support removal constraint. Procedia Manuf. 5, 1043 (2016). https://doi.org/10.1016/j.promfg.2016.08.072

    Article  Google Scholar 

  85. Vaissier, B., Pernot, J.P., Chougrani, L., Véron, P.: Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. CAD Comput. Aided Des. 110, 11 (2019). https://doi.org/10.1016/j.cad.2018.12.007

    Article  Google Scholar 

  86. Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M.: SLM lattice structures: properties, performance, applications and challenges. Mater. Desi. (2019). https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  87. Liang, X., Dong, W., Hinnebusch, S., Chen, Q., Tran, H.T., Lemon, J., Cheng, L., Zhou, Z., Hayduke, D., To, A.C.: Inherent strain homogenization for fast residual deformation simulation of thin-walled lattice support structures built by laser powder bed fusion additive manufacturing. Addit. Manuf. 32, 1 (2020). https://doi.org/10.1016/j.addma.2020.101091

    Article  Google Scholar 

  88. Gan, M.X., Wong, C.H.: Practical support structures for selective laser melting. J. Mater. Process. Technol. 238, 474 (2016). https://doi.org/10.1016/j.jmatprotec.2016.08.006

    Article  Google Scholar 

  89. Ceccanti, F., Giorgetti, A., Citti, P.: A support structure design strategy for laser powder bed fused parts. Procedia Struct. Integr. 24(2019), 667 (2019). https://doi.org/10.1016/j.prostr.2020.02.059

    Article  Google Scholar 

  90. Zhu, L., Feng, R., Li, X., **, J., Wei, X.: A tree-shaped support structure for additive manufacturing generated by using a hybrid of particle swarm optimization and greedy algorithm. J. Comput. Inf. Sci. Eng. 19(4), 1 (2019). https://doi.org/10.1115/1.4043530

    Article  Google Scholar 

  91. Morgan, D., Agba, E., Hill, C.: Support structure development and initial results for metal powder bed fusion additive manufacturing. Procedia Manuf. 10, 819 (2017). https://doi.org/10.1016/j.promfg.2017.07.083

    Article  Google Scholar 

  92. Weber, S., Montero, J., Petroll, C., Schäfer, T., Bleckmann, M., Paetzold, K.: The fracture behavior and mechanical properties of a support structure for additive manufacturing of Ti–6Al–4V. Crystals (2020). https://doi.org/10.3390/cryst10050343

    Article  Google Scholar 

  93. Järvinen, J.P., Matilainen, V., Li, X., Piili, H., Salminen, A., Mäkelä, I., Nyrhilä, O.: Characterization of effect of support structures in laser additive manufacturing of stainless steel. Phys. Procedia 56(C), 72 (2014). https://doi.org/10.1016/j.phpro.2014.08.099

    Article  Google Scholar 

  94. Moller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. Doktorsavhandlingar vid Chalmers Tekniska Hogskola 2(1), 109 (1998). https://doi.org/10.1080/10867651.1997.10487468

    Article  Google Scholar 

  95. Yadroitsev, I., Bertrand, P., Smurov, I.: Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 253(19), 8064 (2007). https://doi.org/10.1016/j.apsusc.2007.02.088

    Article  Google Scholar 

  96. Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M.: On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J. Mater. Process. Technol. 230, 88 (2016). https://doi.org/10.1016/j.jmatprotec.2015.11.016

    Article  Google Scholar 

  97. Samantaray, M., Nath Thatoi, D., Sahoo, S.: Finite element simulation of heat transfer in laser additive manufacturing of AlSi10Mg powders. Mater. Today Proc. 22, 3001 (2019). https://doi.org/10.1016/j.matpr.2020.03.435

    Article  Google Scholar 

  98. Li, Q., Gnanasekaran, B., Fu, Y., Liu, G.R.: Prediction of thermal residual stress and microstructure in direct laser metal deposition via a coupled finite element and multiphase field framework. JOM 72(1), 496 (2020). https://doi.org/10.1007/s11837-019-03922-w

    Article  Google Scholar 

  99. Song, X., Feih, S., Zhai, W., Sun, C.N., Li, F., Maiti, R., Wei, J., Yang, Y., Oancea, V., Romano Brandt, L., Korsunsky, A.M.: Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater. Des. 193, 108779 (2020). https://doi.org/10.1016/j.matdes.2020.108779

    Article  Google Scholar 

  100. Mele, M., Bergmann, A., Campana, G., Pilz, T.: Experimental investigation into the effect of supports and overhangs on accuracy and roughness in laser powder bed fusion. Opt. Laser Technol. 140, 1 (2021). https://doi.org/10.1016/j.optlastec.2021.107024

    Article  Google Scholar 

  101. Whoistyler. Bottle Opener (2015). https://www.thingiverse.com/thing:655148

Download references

Acknowledgements

The authors would like to thank the MIUR (Italian Ministry of University and Research) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Mele.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mele, M., Campana, G. & Bergmann, A. Optimisation of part orientation and design of support structures in laser powder bed fusion. Int J Interact Des Manuf 16, 597–611 (2022). https://doi.org/10.1007/s12008-022-00856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00856-7

Keywords

Navigation