Log in

Evaluation of surface activity of hot-dip galvanized steel after alkaline cleaning

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The surface activity of hot-dip galvanized steel was evaluated after alkaline cleaning by exposing the cleaned specimens in humid supercritical carbon dioxide, followed by extraction and quantification of the formed corrosion products. Different free alkalinities of the cleaning bath were studied to obtain information on the evolution of zinc surface activity at different levels of surface etching. Surface reactivity of uncleaned galvanized steel is restricted and local, with major contributions from grain boundaries and intermetallic particles. Formation of zinc corrosion products took place in uncleaned samples exclusively on and around these sites. Al2O3 removal by alkaline cleaning gradually increased the surface activity. The major increase in surface activity was achieved when increasing the free alkalinity from 0.5 to 4.0 mEq/L, which was shown by formation of zinc corrosion products within zinc grains. The surface activity was confirmed by applying a titanium hexafluoride pretreatment on the cleaned panels and measuring the lateral microscale uniformity of the formed layer. The uniformity increased when larger areas of galvanized steel became activated by alkaline cleaning. Reactivity of zinc is rather difficult to quantify when setting up an industrial cleaning sequence for galvanized steel. Controlled exposure of cleaned samples in humid supercritical carbon dioxide, followed by quantification of oxidized zinc, provides a straightforward method to evaluate zinc reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Markets for prepainted metal, http://prepaintedmetal.eu/874/947

  2. Ohlsson, K, Bergman, T, Sundell, P-E, Deltin, T, Tran, I, Svensson, M, Johansson, M, “Novel Coil Coating Systems Using Fatty Acid Based Reactive Diluents.” Prog. Org. Coat., 73 (4) 291–293 (2012)

    Article  CAS  Google Scholar 

  3. Gao, Z, Zhang, D, Liu, Z, Li, X, Jiang, S, Zhang, Q, “Formation Mechanisms of Environmentally Acceptable Chemical Conversion Coatings for Zinc: A Review.” J. Coat. Technol. Res.,16 (1) (2019)

    Article  Google Scholar 

  4. Sinko, J, “Challenges of Chromate Inhibitor Pigments Replacement in Organic Coatings.” Prog. Org. Coat., 42 267–282 (2001)

    Article  CAS  Google Scholar 

  5. Belov, I, Copeland, D, Fitzwater, B, Knapps, J, Lewis, T, “Developement of Chromium (VI)-Free Coating Systems for Corrosion and Heat Protection.” In: Proc. Coatings Science International, pp 41–45 (2015)

  6. Visser, P, Liu, Y, Terryn, H, Mol, JMC, “Lithium Salts as Leachable Corrosion Inhibitors and Potential Replacement for Hexavalent Chromium in Organic Coatings for the Protection of Aluminum Alloys.” J. Coat. Technol. Res., 13 (4) 557–566 (2016)

    Article  CAS  Google Scholar 

  7. Montemor, MF, “Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances.” Surf. Coat. Technol., 258 17–37 (2014)

    Article  CAS  Google Scholar 

  8. Kaluzny, K, “Why Some Metals and Alloys Are More Difficult to Pretreat than Others - Part I.” Met. Finish., 100 (9) 9–19 (2002)

    Article  CAS  Google Scholar 

  9. Hörnström, SE, Hedlund, EG, Klang, H, Nilsson, J-O, Backlund, M, Tegehall, P-E, “A Surface Study of the Chemical Pretreatment before Coil Coating of Hot Dip Zinc-Coated Steel.” Surf. Interface Anal., 19 (1–12) 121–126 (1992)

    Article  Google Scholar 

  10. Azmat, NS, Ralston, KD, Cole, IS, “Pre-Treatment of Zn Surfaces for Droplet Corrosion Studies.” Surf. Coat. Technol., 205 (3) 928–935 (2010)

    Article  CAS  Google Scholar 

  11. Berger, R, Bexell, U, Stavlid, N, Grehk, TM, “The Influence of Alkali-Degreasing on the Chemical Composition of Hot-Dip Galvanized Steel Surfaces.” Surface and Interface Analysis, 1130–1138 (2006)

    Article  CAS  Google Scholar 

  12. Maeda, S, “Surface Chemistry of Galvanized Steel Sheets Relevant to Adhesion Performance.” Prog. Org. Coat., 28 (4) 227–238 (1996)

    Article  CAS  Google Scholar 

  13. Schoeman, L, Burty, M, “Cleaning Optimization of Hot-Dip Galvanized Steel Surfaces in Preparation for Paint Application.” Mater. Sci. Forum, 941 1772–1777 (2018)

    Article  Google Scholar 

  14. Falk, T, Svensson, J, Johansson, L, “The Role of Carbon Dioxide in the Atmospheric Corrosion of Zinc.” J. Electrochem. Soc., 145 (1) 39–44 (1998)

    Article  CAS  Google Scholar 

  15. Bozbaʇ, SE, Erkey, C, “Supercritical Deposition: Current Status and Perspectives for the Preparation of Supported Metal Nanostructures.” J. Supercrit. Fluids, 96 298–312 (2015)

    Article  Google Scholar 

  16. Snoeyink, V, Jenkins, D, Water Chemistry. Wiley, New York (1980)

    Google Scholar 

  17. Kaleva, A, Saarimaa, V, Heinonen, S, Nikkanen, J.-P, Markkula, A, Väisänen, P, Levänen, E, “Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide.” Nanomaterials, 7 (7) (2017)

    Article  Google Scholar 

  18. Saarimaa, V, Kaleva, A, Paunikallio, T, Nikkanen, J-P, Heinonen, S, Levänen, E, Väisänen, P, Markkula, A, “Convenient Extraction Method for Quantification of Thin Zinc Patina Layers.” Surf. Interface Anal., 50 (5) 564–570 (2018)

    Article  CAS  Google Scholar 

  19. Leroy, V, “Metallurgical Applications of Surface Analytical Techniques.” Mater. Sci. Eng., 42 (C) 289–307 (1980)

    Article  CAS  Google Scholar 

  20. Feliu, S, Jr, Barranco, V, “XPS Study of the Surface Chemistry of Conventional Hot-Dip Galvanised Pure Zn, Galvanneal and Zn-Al Alloy Coatings on Steel.” Acta Mater., 51 5413–5424 (2003)

    Article  CAS  Google Scholar 

  21. Wolpers, M, Angeli, J, “Activation of Galvanized Steel Surfaces before Zinc Phosphating - XPS and GDOES Investigation.” Appl. Surf. Sci., 179 281–291 (2001)

    Article  CAS  Google Scholar 

  22. Biber, HE, “Scanning Auger Microprobe Study of Hot-Dipped Regular-Spangle Galvanized Steel: Part I. Surface Composition of as-Produced Steel.” Metall. Trans. A, 19A 1603–1608 (1988)

    Article  CAS  Google Scholar 

  23. Marder, AR, “The Metallurgy of Zinc-Coated Steel.” Prog. Mater. Sci., 45 (3) 191–271 (2000)

    Article  CAS  Google Scholar 

  24. Strutzenberger, J, Faderl, J, “Solidification and Spangle Formation of Hot-Dip-Galvanized Zinc Coatings.” Met. Mater. Trans. A, 29A 631–645 (1998)

    Article  CAS  Google Scholar 

  25. Peng, D, Wu, J, Yan, X, Du, X, Yan, Y, Li, X, “The Formation and Corrosion Behavior of a Zirconium-Based Conversion Coating on the Aluminum Alloy AA6061.” J. Coat. Technol. Res., 13 (5) 837–850 (2016)

    Article  CAS  Google Scholar 

  26. Rangel, CM, Paiva, TI, Luz, PP, “Conversion Coating Growth on 2024-T3 Al Alloy The Effect of Pre-Treatments.” Surf. Coat. Technol., 202 3396–3402 (2008)

    Article  CAS  Google Scholar 

  27. Lunder, O, Simensen, C, Yu, Y, Nisancioglu, K, “Formation and Characterisation of Ti-Zr Based Conversion Layers on AA6060 Aluminium.” Surf. Coat. Technol., 184 (2–3) 278–290 (2004)

    Article  CAS  Google Scholar 

  28. Nordlien, JH, Walmsley, JC, Østerberg, H, Nisancioglu, K, “Formation of a Zirconium-Titanium Based Conversion Layer on AA 6060 Aluminium.” Surf. Coat. Technol., 153 (1) 72–78 (2002)

    Article  CAS  Google Scholar 

  29. Saarimaa, V, Markkula, A, Juhanoja, J, Skrifvars, BJ, “Improvement of Barrier Properties of Cr-Free Pretreatments for Coil-Coated Products.” J. Coat. Technol. Res., 12 (4) 721–730 (2015)

    Article  CAS  Google Scholar 

  30. Ramezanzadeh, B, Attar, MM, Farzam, M, “Corrosion Performance of a Hot-Dip Galvanized Steel Treated by Different Kinds of Conversion Coatings.” Surf. Coat. Technol., 205 (3) 874–884 (2010)

    Article  CAS  Google Scholar 

  31. Saarimaa, V, Kauppinen, E, Markkula, A, Juhanoja, J, Skrifvars, B-J, Steen, P, “Microscale Distribution of Ti-Based Conversion Layer on Hot Dip Galvanized Steel.” Surf. Coat. Technol., 206 19–20 (2012)

    Article  Google Scholar 

  32. Saarimaa, V, Kauppinen, E, Markkula, A, Juhanoja, J, Skrifvars, BJ, Steen, P, “Microscale Distribution of Ti-Based Conversion Layer on Hot Dip Galvanized Steel.” Surf. Coat. Technol., 206 (19–20) 4173–4179 (2012)

    Article  CAS  Google Scholar 

  33. Verdier, S, van der Laak, N, Dalard, F, Metson, J, Delalande, S, “An Electrochemical and SEM Study of the Mechanism of Formation, Morphology, and Composition of Titanium or Zirconium Fluoride-Based Coatings.” Surf. Coat. Technol., 200 (9) 2955–2964 (2006)

    Article  CAS  Google Scholar 

  34. Verdier, S, Van Der Laak, N, Delalande, S, Metson, J, Dalard, F, “The Surface Reactivity of a Magnesium-Aluminium Alloy in Acidic Fluoride Solutions Studied by Electrochemical Techniques and XPS.” Appl. Surf. Sci., 235 (4) 513–524 (2004)

    Article  CAS  Google Scholar 

  35. Lostak, T, Maljusch, A, Klink, B, Krebs, S, Kimpel, M, Flock, J, Schulz, S, Schuhmann, W, “Zr-Based Conversion Layer on Zn-Al-Mg Alloy Coated Steel Sheets: Insights into the Formation Mechanism.” Electrochim. Acta, 137 65–74 (2014)

    Article  CAS  Google Scholar 

  36. Deck, P, Moon, M, Sujdak, R, “Investigation of Fluoacid Based Conversion Coatings on Aluminium.” Prog. Org. Coat., 34 39–48 (1998)

    Article  CAS  Google Scholar 

  37. Saarimaa, V, Markkula, A, Arstila, K, Manni, J, Juhanoja, J, “Effect of Hot Dip Galvanized Steel Surface Chemistry and Morphology on Titanium Hexafluoride Pretreatment.” Adv. Mater. Phys. Chem., 7 28–41 (2017)

    Article  CAS  Google Scholar 

  38. Saarimaa, V, Markkula, A, Juhanoja, J, Skrifvars, B-J, “Novel Insight to Aluminum Compounds in the Outermost Layers of Hot Dip Galvanized Steel and How They Affect the Reactivity of the Zinc Surface.” Surf. Coat. Technol., 306 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Saarimaa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saarimaa, V., Lange, C., Paunikallio, T. et al. Evaluation of surface activity of hot-dip galvanized steel after alkaline cleaning. J Coat Technol Res 17, 285–292 (2020). https://doi.org/10.1007/s11998-019-00272-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00272-9

Keywords

Navigation