Log in

Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

We report on the anticorrosion and antifouling properties of epoxy-based polyaniline (PANI)–graphene oxide nanosheets (GONs) paint coatings. PANI-based nanocomposites with different fractions of GONs were synthesized by an in situ polymerization process. Well-dispersed GONs were prepared using a modified Hummers’ method in the presence of (NH4)2S2O8 as an effective oxidant. We employed a spontaneous in situ polymerization at a constant temperature of 0°C using an ultrasonic bath to produce homogenous PANI-GON nanocomposites as characterized by X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM) techniques. The nanocomposites were incorporated into an epoxy resin with different fractions to form epoxy/PANI-GON paint coatings. The epoxy/PANI-GON dip coated on a carbon steel (grade St-37) substrate exhibited significant improvement of the anticorrosion and antifouling properties. Epoxy-12 wt% PANI-GON coating revealed the highest corrosion resistance of 2.70 × 106 Ω cm2 after 192-h immersion in saline water measured by electrochemical impedance spectroscopy (EIS) technique. Such high corrosion resistance was attainable by inhibiting the diffusion process against the corrosive environment. Furthermore, higher protection against fouling was observed for epoxy 6 and 12 wt% PANI/GON as the most efficient antifouling composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koch, GH, Brongers, MP, Thompson, NG, Virmani, YP, Payer, JH, “Corrosion Cost and Preventive Strategies in the United States.” (2002)

  2. Ramón, JE, Gandía-Romero, JM, Valcuende, M, Bataller, R, “Integrated Sensor Network for Monitoring Steel Corrosion in Concrete Structures.” VITRUVIO-Int. J. Archit. Technol. Sustain., 1 (1) 65–79 (2016)

    Article  Google Scholar 

  3. Böhm, S, “Graphene Against Corrosion.” Nat. Nanotechnol., 9 (10) 741–742 (2014)

    Article  CAS  Google Scholar 

  4. Rathish, RJ, Dorothy, R, Joany, R, Pandiarajan, M, “Corrosion Resistance of Nanoparticle-Incorporated Nano Coatings.” Eur. Chem. Bull., 2 (12) 965–970 (2013)

    CAS  Google Scholar 

  5. Zvonkina, I, Soucek, M, “Inorganic–Organic Hybrid Coatings: Common and New Approaches.” Curr. Opin. Chem. Eng., 11 123–127 (2016)

    Article  Google Scholar 

  6. Montemor, M, “Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances.” Surf. Coat. Technol., 258 17–37 (2014)

    Article  CAS  Google Scholar 

  7. Nine, MJ, Cole, MA, Tran, DN, Losic, D, “Graphene: A Multipurpose Material for Protective Coatings.” J. Mater. Chem. A, 3 (24) 12580–12602 (2015)

    Article  CAS  Google Scholar 

  8. Hellio, C, Yebra, D, Advances in Marine Antifouling Coatings and Technologies. Elsevier, Amsterdam, 2009

    Book  Google Scholar 

  9. Nurioglu, AG, Esteves, ACC, “Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)

    Article  CAS  Google Scholar 

  10. Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 (2) 135–176 (2009)

    Article  CAS  Google Scholar 

  11. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA, “Electric Field Effect in Atomically Thin Carbon Films.” Science, 306 (5696) 666–669 (2004)

    Article  CAS  Google Scholar 

  12. Martin-Gallego, M, Verdejo, R, Lopez-Manchado, M, Sangermano, M, “Epoxy-Graphene UV-Cured Nanocomposites.” Polymer, 52 (21) 4664–4669 (2011)

    Article  CAS  Google Scholar 

  13. Wang, H, Hao, Q, Yang, X, Lu, L, Wang, X, “Effect of Graphene Oxide on the Properties of its Composite with Polyaniline.” ACS Appl. Mater. Interfaces, 2 (3) 821–828 (2010)

    Article  CAS  Google Scholar 

  14. Zhang, WL, Liu, YD, Choi, HJ, “Fabrication of Semiconducting Graphene Oxide/Polyaniline Composite Particles and their Electrorheological Response Under an Applied Electric Field.” Carbon, 50 (1) 290–296 (2012)

    Article  CAS  Google Scholar 

  15. Nasrollahzadeh, M, Babaei, F, Fakhri, P, Jaleh, B, “Synthesis, Characterization, Structural, Optical Properties and Catalytic Activity of Reduced Graphene Oxide/Copper Nanocomposites.” RSC Adv., 5 (14) 10782–10789 (2015)

    Article  CAS  Google Scholar 

  16. Huang, Y, Lin, C, “Polyaniline-Intercalated Graphene Oxide Sheet and its Transition to a Nanotube Through a Self-curling Process.” Polymer, 53 (5) 1079–1085 (2012)

    Article  CAS  Google Scholar 

  17. Huang, X, Qi, X, Boey, F, Zhang, H, “Graphene-Based Composites.” Chemical Society Reviews, 41 (2) 666–686 (2012)

    Article  CAS  Google Scholar 

  18. Zhu, Y, Murali, S, Cai, W, Li, X, Suk, JW, Potts, JR, Ruoff, RS, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Advanced Materials, 22 (35) 3906–3924 (2010)

    Article  CAS  Google Scholar 

  19. Pumera, M, “Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage.” The Chemical Record, 9 (4) 211–223 (2009)

    Article  CAS  Google Scholar 

  20. Wei, J, Vo, T, Inam, F, “Epoxy/Graphene Nanocomposites–Processing and Properties: A Review.” RSC Advances, 5 (90) 73510–73524 (2015)

    Article  CAS  Google Scholar 

  21. Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surface and Coatings Technology, 204 (3) 237–245 (2009)

    Article  CAS  Google Scholar 

  22. Dominis, AJ, Spinks, GM, Wallace, GG, “Comparison of Polyaniline Primers Prepared with Different Dopants for Corrosion Protection of Steel.” Prog. Org. Coat., 48 (1) 43–49 (2003)

    Article  CAS  Google Scholar 

  23. Fang, J, Xu, K, Zhu, L, Zhou, Z, Tang, H, “A Study on Mechanism of Corrosion Protection of Polyaniline Coating and its Failure.” Corros. Sci., 49 (11) 4232–4242 (2007)

    Article  CAS  Google Scholar 

  24. Schauer, T, Joos, A, Dulog, L, Eisenbach, C, “Protection of Iron Against Corrosion with Polyaniline Primers.” Prog. Org. Coat., 33 (1) 20–27 (1998)

    Article  CAS  Google Scholar 

  25. Hartwig, A, Sebald, M, Pütz, D, Aberle, L, “Preparation, Characterisation and Properties of Nanocomposites Based on Epoxy Resins—An Overview.” Proc. Macromolecular Symposia (2005)

  26. Becker, O, Varley, R, Simon, G, “Morphology, Thermal Relaxations and Mechanical Properties of Layered Silicate Nanocomposites Based upon High-Functionality Epoxy Resins.” Polymer, 43 (16) 4365–4373 (2002)

    Article  CAS  Google Scholar 

  27. Yang, L, Liu, F, Han, E, “Effects of P/B on the Properties of Anticorrosive Coatings with Different Particle Size.” Prog. Org. Coat., 53 (2) 91–98 (2005)

    Article  CAS  Google Scholar 

  28. Lamaka, SV, Zheludkevich, ML, Yasakau, KA, Serra, R, Poznyak, S, Ferreira, M, “Nanoporous Titania Interlayer as Reservoir of Corrosion Inhibitors for Coatings with Self-healing Ability.” Prog. Org. Coat., 58 (2) 127–135 (2007)

    Article  CAS  Google Scholar 

  29. Shi, H, Liu, F, Yang, L, Han, E, “Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2.” Prog. Org. Coat., 62 (4) 359–368 (2008)

    Article  CAS  Google Scholar 

  30. Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings.” Surf. Coat. Technol., 311 282–294 (2017)

    Article  CAS  Google Scholar 

  31. Yu, Z, Di, H, Ma, Y, He, Y, Liang, L, Lv, L, Ran, X, Pan, Y, Luo, Z, “Preparation of Graphene Oxide Modified by Titanium Dioxide to Enhance the Anti-Corrosion Performance of Epoxy Coatings.” Surf. Coat. Technol., 276 471–478 (2015)

    Article  CAS  Google Scholar 

  32. Mostafaei, A, Nasirpouri, F, “Electrochemical Study of Epoxy Coating Containing Novel Conducting Nanocomposite Comprising Polyaniline–ZnO Nanorods on Low Carbon Steel.” J. Coat. Technol. Res., 10 (5) 679–694 (2013)

    Article  CAS  Google Scholar 

  33. Mostafaei, A, Nasirpouri, F, “Preparation and Characterization of a Novel Conducting Nanocomposite Blended with Epoxy Coating for Antifouling and Antibacterial Applications.” Corros. Eng. Sci. Technol., 48 (7) 513–524 (2014)

    Article  CAS  Google Scholar 

  34. Mostafaei, A, Nasirpouri, F, “Epoxy/Polyaniline–ZnO Nanorods Hybrid Nanocomposite Coatings: Synthesis, Characterization and Corrosion Protection Performance of Conducting Paints.” Prog. Org. Coat., 77 (1) 146–159 (2014)

    Article  CAS  Google Scholar 

  35. Jafari, Y, Ghoreishi, SM, Shabani-Nooshabadi, M, “Electrochemical Deposition and Characterization of Polyaniline–Graphene Nanocomposite Films and its Corrosion Protection Properties.” J. Polym. Res., 23 (5) 91 (2016)

    Article  CAS  Google Scholar 

  36. Mooss, VA, Bhopale, AA, Deshpande, PP, Athawale, AA, “Graphene Oxide-Modified Polyaniline Pigment for Epoxy Based Anti-Corrosion Coatings.” Chem. Pap., 71 (8) 1515–1528 (2017)

    Article  CAS  Google Scholar 

  37. Zhang, K, Zhang, LL, Zhao, X, Wu, J, “Graphene/Polyaniline Nanofiber Composites as supercapacitor Electrodes.” Chem. Mater., 22 (4) 1392–1401 (2010)

    Article  CAS  Google Scholar 

  38. Nasirpouri, F, Pourmahmoudi, H, Abbasi, F, Littlejohn, S, Chauhan, AS, Nogaret, A, “Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites.” J. Electron. Mater., 44 (10) 3512 (2015)

    Article  CAS  Google Scholar 

  39. Huang, Y, Lin, C, “Facile Synthesis and Morphology Control of Graphene Oxide/Polyaniline Nanocomposites Via In Situ Polymerization Process.” Polymer, 53 (13) 2574–2582 (2012)

    Article  CAS  Google Scholar 

  40. Yin, Q, Shu, R, **ng, H, Tan, D, Gan, Y, Xu, G, “Rheological Behavior and Electrical Properties of Graphene Oxide/Polyaniline Nanocomposites.” Nano, 11 (02) 1650020 (2016)

    Article  CAS  Google Scholar 

  41. Li, M, Yin, W, Han, X, Chang, X, “Hierarchical Nanocomposites of Polyaniline Scales Coated on Graphene Oxide Sheets for Enhanced Supercapacitors.” J. Solid State Electrochem., 20 (7) 1941–1948 (2016)

    Article  CAS  Google Scholar 

  42. Thema, F, Moloto, M, Dikio, E, Nyangiwe, N, Kotsedi, L, Maaza, M, Khenfouch, M, “Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide.” J. Chem., 2013 (2012)

  43. Sun, J, Bi, H, “Pickering Emulsion Fabrication and Enhanced Supercapacity of Graphene Oxide-Covered Polyaniline Nanoparticles.” Mater. Lett., 81 48–51 (2012)

    Article  CAS  Google Scholar 

  44. Shunaev, VV, Glukhova, OE, “Topology Influence on the Process of Graphene Functionalization by Epoxy and Hydroxyl Groups.” J. Phys. Chem. C, 120 (7) 4145–4149 (2016)

    Article  CAS  Google Scholar 

  45. Wei, H, Zhu, J, Wu, S, Wei, S, Guo, Z, “Electrochromic Polyaniline/Graphite Oxide Nanocomposites with Endured Electrochemical Energy Storage.” Polymer, 54 (7) 1820–1831 (2013)

    Article  CAS  Google Scholar 

  46. Hu, F, Li, W, Zhang, J, Meng, W, “Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite.” J. Mater. Sci. Technol., 30 (4) 321–327 (2014)

    Article  CAS  Google Scholar 

  47. Marcano, DC, Kosynkin, DV, Berlin, JM, Sinitskii, A, Sun, Z, Slesarev, A, Alemany, LB, Lu, W, Tour, JM, “Improved Synthesis of Graphene Oxide.” ACS Nano, 4 (8) 4806–4814 (2010)

    Article  CAS  Google Scholar 

  48. Imran, SM, Kim, Y, Shao, GN, Hussain, M, Choa, Y, Kim, HT, “Enhancement of Electroconductivity of Polyaniline/Graphene Oxide Nanocomposites Through In Situ Emulsion Polymerization.” J. Mater. Sci., 49 (3) 1328–1335 (2014)

    Article  CAS  Google Scholar 

  49. Mohammadi, S, Taromi, FA, Shariatpanahi, H, Neshati, J, Hemmati, M, “Electrochemical and Anticorrosion Behavior of Functionalized Graphite Nanoplatelets Epoxy Coating.” J. Ind. Eng. Chem., 20 (6) 4124–4139 (2014)

    Article  CAS  Google Scholar 

  50. Liu, C, Bi, Q, Leyland, A, Matthews, A, “An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behaviour.” Corros. Sci., 45 (6) 1257–1273 (2003)

    Article  CAS  Google Scholar 

  51. Hang, TTX, Truc, TA, Nam, TH, Oanh, VK, Jorcin, J-B, Pébère, N, “Corrosion Protection of Carbon Steel by an Epoxy Resin Containing Organically Modified Clay.” Surf. Coat. Technol., 201 (16) 7408–7415 (2007)

    Article  CAS  Google Scholar 

  52. Pourhashem, S, Rashidi, A, Vaezi, MR, Bagherzadeh, MR, “Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Amino-Silane Functionalized Graphene Oxide.” Surf. Coat. Technol., 317 1–9 (2017)

    Article  CAS  Google Scholar 

  53. Sun, W, Wang, L, Wu, T, Wang, M, Yang, Z, Pan, Y, Liu, G, “Inhibiting the Corrosion-Promotion Activity of Graphene.” Chem. Mater., 27 (7) 2367–2373 (2015)

    Article  CAS  Google Scholar 

  54. Di, H, Yu, Z, Ma, Y, Zhang, C, Li, F, Lv, L, Pan, Y, Shi, H, He, Y, “Corrosion-Resistant Hybrid Coatings Based on Graphene Oxide–Zirconia Dioxide/Epoxy System.” J. Taiwan Inst. Chem. Eng., 67 511–520 (2016)

    Article  CAS  Google Scholar 

  55. Mohammadi, S, Shariatpanahi, H, Taromi, FA, Neshati, J, “Electrochemical and Anticorrosion Behaviors of Hybrid Functionalized Graphite Nano-Platelets/Tripolyphosphate in Epoxy-Coated Carbon Steel.” Mater. Res. Bull., 80 7–22 (2016)

    Article  CAS  Google Scholar 

  56. Li, M, Ji, X, Cui, L, Liu, J, “In Situ Preparation of Graphene/Polypyrrole Nanocomposite Via Electrochemical Co-Deposition Methodology for Anti-Corrosion Application.” J. Mater. Sci., 52 (20) 12251–12265 (2017)

    Article  CAS  Google Scholar 

  57. Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A Facile Route of Making Silica Nanoparticles-Covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance.” Chem. Eng. J., 303 511–528 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sahand University of Technology of Tabriz and University of Tabriz and Iranian Nanotechnology Initiative Council for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Nasirpouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazli-Shokouhi, S., Nasirpouri, F. & Khatamian, M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J Coat Technol Res 16, 983–997 (2019). https://doi.org/10.1007/s11998-018-00173-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-00173-3

Keywords

Navigation