Log in

Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The acidified ethanol extract of pomegranate (Punica granatum L.) peel bioactive compounds was freeze-dried and encapsulated using a combination of maltodextrin (MDX 5, 10, and 15%) with calcium alginate (0.1%) with a weight ratio (w/w) of 1:5 (extract/wall material). The effects of various parameters on pomegranate peel extraction (POPx) and POPx-encapsulated powder were analyzed on bioactive components, physicochemical, morphological properties, and storage stability. The results revealed that process yield was positively influenced by increasing MDX concentration, due to the increase on mixture content. Encapsulated powder with 15% MDX had the highest total phenolic compounds (TPC, 73.1 mg GA/kg), the total anthocyanin content (TAC, 40.2 mg c3g/kg dmp and antioxidant capacity by FRAP, 405 (Fe2+, μmol/l)), the DPPH assay (RSA, 65.1%), the lowest IC50, 0.56 ± 0.02 mg/ml, and the lowest glass transition temperature indicating that the highest antioxidant capacity among other wall materials. In respect to morphology, the particles of encapsulated powders with high concentration of MDX were larger and smoother. Stability and half-life of encapsulated powders were measured from 42 days of storage study at 4 °C and 25 °C, and 52 and 75% relative humidity. Storage tests revealed first-order degradation kinetics for anthocyanin. The TAC of the PoPx-microencapsulated powders with wall material of 15% and control decreased by 18% and 33%, respectively, after 42 days storage at 4 °C, while at the storage temperature of 25 °C, the decreases were in the order of 24% and 38%, respectively, over the same period of time. The highest anthocyanin content was observed in the freeze-dried MDX 15%-encapsulated powder at 4 °C storage temperature and 75% relative humidity with a half-life (t1/2) of 115 days, and the reaction rate constant (k) of 0.64 × 10−2 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Y:

Yield

E:

Efficiency

TPC:

Total phenolic compounds

RSA:

Radical scavenging activity

FRAP:

Ferric reducing antioxidant power

TAC:

Total anthocyanin content

IC50 :

The concentration of extract required to scavenge 50% of 2, 2-diphenyl-1-picrylhydrazyl free radical

POP:

Pomegranate peel

POPx:

Pomegranate peel extract

Tg:

Glass transition temperature

MDX:

Maltodextrin

References

  • Ahmed, M., Akter, M. S., Lee, J. C., & Eun, G. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT-Food Science and Technology, 43(9), 1307–1312.

    Article  CAS  Google Scholar 

  • Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.

    Article  CAS  Google Scholar 

  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  • Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.

    Article  CAS  Google Scholar 

  • Cemeroglu, B., Velioglu, S., & Isik, S. (1994). Degradation kinetics of anthocyanins in sour cherry juice and concentrate. Journal of Food Science, 59(6), 1216–1218.

    Article  CAS  Google Scholar 

  • Da Silva Carvalho, A. G., da Costa Machado, M. T., da Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., & Hubinger, M. D. (2016). Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technology, 294, 421–428.

    Article  Google Scholar 

  • Deladino, L., Pablo, S. A., Alba, S. N., & Miriam, N. M. (2007). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 71(1), 126–134.

    Article  Google Scholar 

  • Desai, K., Goud, H., & Hyun, J. P. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 1361–1394.

    Article  CAS  Google Scholar 

  • Ersus, S., & Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805–812.

    Article  CAS  Google Scholar 

  • Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147.

    Article  CAS  Google Scholar 

  • Fang, Z., & Bhandari, B. (2012). Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International, 48(2), 478–483.

    Article  CAS  Google Scholar 

  • Flores, F. P., Singh, R. K., & Kong, F. (2014). Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering, 137, 1–6.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Giusti, M. M., & Wrolstad, R. E. (2001). In R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry (pp. 1–13). New York: John Wiley & Sons.

    Google Scholar 

  • Gözlekçi, S., Saraçoğlu, O., Ebru Onursal, E., & Mustafa Özgen, M. (2011). Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacognosy Magazine, 7(26), 161–164.

    Article  Google Scholar 

  • Gradinarua, G., Biliaderisb, C. G., Kallithrakac, S., Kefalasa, P., & Garcia-Viguerad, C. (2003). Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: effects of copigmentation and glass transition. Food Chemistry, 83(3), 423–436.

    Article  Google Scholar 

  • Hager, T. J., Howard, L. R., & Prior, R. L. (2008). Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. Journal of Agricultural and Food Chemistry, 56(3), 689–695.

    Article  CAS  Google Scholar 

  • Hamedi, F., Mohebbi, M., Shahidi, F., & Azarpazhooh, E. (2018). Ultrasound-assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: mass transfer, texture, and phenolic evaluations. Food and Bioprocess Technology, 11(5), 1060–1074.

    Article  Google Scholar 

  • Iversen, C. K. (1999). Black currant nectar: effect of processing and storage on anthocyanin and ascorbic acid content. Journal of Food Science, 64(1), 37–41.

    Article  CAS  Google Scholar 

  • Jafari, S. M., & Mahdavi-Khazaei, K. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25.

    Article  CAS  Google Scholar 

  • Jalil, R., & Nixon, J. R. (1990). Microencapsulation using poly(DL-lactic acid) II: effect of polymer molecular weight on the microcapsule properties. Journal of Microencapsulation, 7(2), 245–254.

    Article  CAS  Google Scholar 

  • Kaderides, K., Goulaa, M. A., & Adamopoulosb, K. G. (2015). A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation Author links open overlay panel. Innovative Food Science & Emerging Technologies, 31, 204–215.

    Article  CAS  Google Scholar 

  • Kanatt, S. R., Chander, R., & Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science and Technology, 45(2), 216–222.

    Article  CAS  Google Scholar 

  • Karimi, M., Fathi, M., Sheykholeslam, Z., Sahraiyan, B., & Naghipoor, F. (2012). Effect of different processing parameters on quality factors and image texture features of bread. Journal of Bioprocessing and Biotechniques, 2(5), 1–7.

    Article  Google Scholar 

  • Kaushik, V., & Roos, Y. H. (2007). Limonene encapsulation in freeze-drying of gum Arabic-sucrose-gelatin systems. LWT, Food Science and Technology, 40(8), 1381–1391.

    Article  CAS  Google Scholar 

  • Khazaei, K. M., Jafari, S., Ghorbani, M., & Kakhki, A. H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105, 57–62.

    Article  Google Scholar 

  • Liu, L., Sun, Y., Laura, T., Liang, X., Ye, H., & Zeng, X. (2009). Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex Kudingcha C.J. Tseng. Food Chemistry, 112(1), 35–41.

    Article  CAS  Google Scholar 

  • Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. (2014). Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Drying Technology, 32(5), 509–518.

    Article  CAS  Google Scholar 

  • Mirdehghan, S. H., & Rahemi, H. (2007). Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L) fruit. HortScience, 111, 120–127.

    CAS  Google Scholar 

  • Nayak, C. A., & Rastogi, K. N. (2010). Effect of selected additives on microencapsulation of anthocyanin by spray drying. Drying Technology, 28(12), 1396–1404.

    Article  CAS  Google Scholar 

  • Opara, L. U., Al-Ani, M. R., & Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2(3), 315–321.

    Article  CAS  Google Scholar 

  • Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2011). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 18(5), 1249–1257.

    Article  CAS  Google Scholar 

  • Parrarud, S., & Pranee, A. (2010). Microencapsulation of Zn-chlorophyll pigment from pandan leaf by spray drying and its characteristic. International Food Research Journal, 17, 1031–1042.

    Google Scholar 

  • Prakash, A., Mathur, K., Vishwakarma, A., Vuppu, S., & Mishra, B. (2013). Comparative assay of antioxidant and antibacterial properties of Indian culinary seasonal fruit peel extracts obtained from Vellore, Tamilnadu. International Journal of Pharmaceutical Sciences Review and Research, 19(1), 131–135.

    Google Scholar 

  • Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885–894.

    Article  CAS  Google Scholar 

  • Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394.

    Article  CAS  Google Scholar 

  • Santos, D. T., & Meireles, M. A. A. (2011). Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innovative Food Science and Emerging Technologies, 12(3), 398–406.

    Article  CAS  Google Scholar 

  • Selim, K., Tsimidou, M., & Biliaderis, C. G. (2000). Kinetic studies of degradation of saffron carotenoids encapsulated amorphous polymer matrices. Food Chemistry, 71(2), 199–206.

    Article  CAS  Google Scholar 

  • Shabtay, A., Eitam, H., Tadmor, Y., Orlov, A., Meir, A., Weinberg, P., Weinberg, Z. G., Chen, Y., Brosh, A., Izhaki, I., & Kerem, Z. (2008). Nutritive and antioxidative potential of fresh and stored pomegranate industrial byproduct as a novel beef cattle feed. Agricultural and Food Chemistry, 56(21), 10063–10070.

    Article  CAS  Google Scholar 

  • Silva, S., Costa, E. M., Calhau, C., Morais, R. M., & Pintado, M. E. (2017). Anthocyanin extraction from plant tissues: a review. Critical Reviews in Food Science and Nutrition, 57(14), 3072–3083.

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total polyphenols and other oxidation substrates and antioxidants by means of folin–ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Tabaraki, R., Heidarizadi, E., & Benvidi, A. (2012). Optimization of ultrasonic assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Separation and Purification Technology, 98, 16–23.

    Article  CAS  Google Scholar 

  • Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418.

    Article  Google Scholar 

  • Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried acai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914.

    Article  CAS  Google Scholar 

  • Wang, W. D., & Xu, S. Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271–275.

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Iran National Scientific Foundation (INSF) and Agricultural Engineering Research Institute (AERI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Azarpazhooh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarpazhooh, E., Sharayei, P., Zomorodi, S. et al. Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity. Food Bioprocess Technol 12, 199–210 (2019). https://doi.org/10.1007/s11947-018-2195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2195-1

Keywords

Navigation