Log in

Pea Protein Isolates: Novel Wall Materials for Microencapsulating Flaxseed Oil

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the potential of three commercially available pea protein isolates (PPIs), Nutralys (Roquette, USA), PP (Znaturals, USA), and Pulseplus80 (AGT, Canada) as wall materials for microencapsulating flaxseed oil. Microencapsulation with spray drying was conducted with PPIs at 10 % concentration and varied flaxseed-oil-to-wall-material ratios (1:5, 1:3.3, and 1:2.5). All three PPIs emulsion prepared using 1:5 core-to-wall ratio were stable. Microencapsulation efficiencies (MEs) at 1:5 core-to-wall-material ratio were 90.46, 84.9, and 71.9 % for Nutralys, PP, and Pulseplus80, respectively. Results show that when the core-to-wall-material ratio increased to 1:2.5, the MEs decreased to 67.9, 75.6, and 44.6 % for Nutralys, PP, and Pulseplus80, respectively. Proximate composition of PPIs influenced the functional properties and emulsion stability and, ultimately, MEs. Electrophoresis and Fourier transform infrared spectroscopy (FTIR) analyses were conducted to determine differences in these three proteins. This study also evaluated microcapsules prepared with 1:5 ratio for water content, water activity, solubility, and morphological properties. Findings demonstrate that PPI, a natural, low-cost, allergen-free ingredient can be used effectively as a wall material for microencapsulation at a 10 % solid concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AACC (2012). American Association of Cereal Chemists approved method 56–30.01 (11th Ed.). St. Paul.

  • AOAC (1995). Official methods of analysis of the Association of Official Analytical Chemistry (16th Ed). In In AOAC International, 1141. Washington.

  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). Integrated optimization of fish oil microencapsulation process by spray drying. Journal of Microencapsulation, 29(8), 790–804.

    Article  CAS  Google Scholar 

  • Ahn, J.-H., Kim, Y.-P., Lee, Y.-M., Seo, E.-M., Lee, K.-W., & Kim, H.-S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98–105. doi:10.1016/j.foodchem.2007.07.067.

    Article  CAS  Google Scholar 

  • Bajaj, P. R., Survase, S. A., Bule, M. V., & Singhal, R. S. (2010). Studies on viability of Lactobacillus fermentum by microencapsulation using extrusion spheronization. Food Biotechnology, 24(2), 150–164.

    Article  CAS  Google Scholar 

  • Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., et al. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537–546. doi:10.1016/j.foodres.2009.07.021.

    Article  CAS  Google Scholar 

  • Boyle M. (2014). http://www.bloomberg.com/news/2014-04-23/you-will-eat-your-peas-now-as-big-food-binges-on-protein.html.

  • Butt, M. S., & Batool, R. (2010). Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition, 9(4), 373–379.

    Article  CAS  Google Scholar 

  • Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.

  • Cheung, L., Wanasundara, J., & Nickerson, M. (2015). Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophysics, 10(1), 30–38. doi:10.1007/s11483-014-9350-7.

    Article  Google Scholar 

  • Costa, A. M. M., Nunes, J. C., Lima, B. N. B., Pedrosa, C., Calado, V., Torres, A. G., et al. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168(0), 157–166. doi:10.1016/j.foodchem.2014.07.016.

    Article  CAS  Google Scholar 

  • Dong, D., Qi, Z., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2015). Microencapsulation of flaxseed oil by soya proteins–gum arabic complex coacervation. International Journal of Food Science & Technology.

  • Donsì, F., Senatore, B., Huang, Q., & Ferrari, G. (2010). Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals. Journal of Agricultural and Food Chemistry, 58(19), 10653–10660.

    Article  Google Scholar 

  • Drusch, S., Serfert, Y., Scampicchio, M., Schmidt-Hansberg, B., & Schwarz, K. (2007). Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. Journal of Agricultural and Food Chemistry, 55(26), 11044–11051. doi:10.1021/jf072536a.

    Article  CAS  Google Scholar 

  • Dziuba, J., Szerszunowicz, I., Nałęcz, D., & Dziuba, M. (2014). Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds. Acta Scientiarum Polonorum. Technologia Alimentaria, 13(2), 181–190.

    Article  CAS  Google Scholar 

  • Gerber, M. (2012). Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. British Journal of Nutrition, 107(S2), S228–S239.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Saurel, R., Chambin, O., Cases, E., Voilley, A., & Cayot, P. (2010). Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry, 122(2), 447–454. doi:10.1016/j.foodchem.2009.04.017.

    Article  CAS  Google Scholar 

  • Goyal, A., Sharma, V., Upadhyay, N., Singh, A., Arora, S., Lal, D., et al. (2014). Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids. Journal of Food Science and Technology, 1-10.

  • Harper, C. R., & Jacobson, T. A. (2005). Usefulness of omega-3 fatty acids and the prevention of coronary heart disease. The American Journal of Cardiology, 96(11), 1521–1529. doi:10.1016/j.amjcard.2005.07.071.

    Article  CAS  Google Scholar 

  • Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835. doi:10.1080/07373930802135972.

    Article  Google Scholar 

  • Jafari, S. M., Beheshti, P., & Assadpoor, E. (2012). Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with arabic gum. Journal of Food Engineering, 109(1), 1–8.

    Article  CAS  Google Scholar 

  • Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11(1), 77–89.

    Article  CAS  Google Scholar 

  • Karaca, A. C., Nickerson, M., & Low, N. H. (2013). Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139(1–4), 448–457. doi:10.1016/j.foodchem.2013.01.040.

    Article  CAS  Google Scholar 

  • Kingman, S. M., Walker, A. F., Low, A., Sambrook, I., Owen, R., & Cole, T. (1993). Comparative effects of four legume species on plasma lipids and faecal steroid excretion in hypercholesterolaemic pigs. British Journal of Nutrition, 69(02), 409–421.

    Article  CAS  Google Scholar 

  • Koyoro, H., & Powers, J. (1987). Functional properties of pea globulin fractions. Cereal Chemistry, 64(2), 97.

    CAS  Google Scholar 

  • Kuang, P., Zhang, H., Bajaj, P. R., Yuan, Q., Tang, J., Chen, S., et al. (2015). Physicochemical properties and storage stability of lutein microcapsules prepared with maltodextrins and sucrose by spray drying. Journal of Food Science.

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  • Li, H., Prairie, N., Udenigwe, C. C., Adebiyi, A. P., Tappia, P. S., Aukema, H. M., et al. (2011). Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. Journal of Agricultural and Food Chemistry, 59(18), 9854–9860.

    Article  CAS  Google Scholar 

  • Liu, S., Low, N. H., & Nickerson, M. T. (2010). Entrapment of flaxseed oil within gelatin-gum arabic capsules. Journal of the American Oil Chemists’ Society (JAOCS), 87(7), 809–815. doi:10.1007/s11746-010-1560-7.

    Article  CAS  Google Scholar 

  • Omar, K. A., Shan, L., Zou, X., Song, Z., & Wang, X. (2009). Effects of two emulsifiers on yield and storage of flaxseed oil powder by response surface methodology. Pakistan Journal of Nutrition, 8(9), 1316–1324.

    Article  CAS  Google Scholar 

  • Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J., Andrade, L. R., Pedrosa, C., & Pierucci, A. P. T. R. (2009). Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International, 42(1), 115–121. doi:10.1016/j.foodres.2008.10.008.

    Article  CAS  Google Scholar 

  • Pierucci, A. P. T. R., Andrade, L. R., Baptista, E. B., Volpato, N. M., & Rocha-Leão, M. H. M. (2006). New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23(6), 654–662. doi:10.1080/02652040600776523.

    Article  CAS  Google Scholar 

  • Pinnamaneni, S., Das, N., & Das, S. (2003). Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 58(8), 554–558.

    CAS  Google Scholar 

  • Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., & Aubourg, S. P. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food and Bioprocess Technology, 7(8), 2354–2365.

    Article  CAS  Google Scholar 

  • Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337.

    Article  CAS  Google Scholar 

  • Rigamonti, E., Parolini, C., Marchesi, M., Diani, E., Brambilla, S., Sirtori, C. R., et al. (2010). Hypolipidemic effect of dietary pea proteins: impact on genes regulating hepatic lipid metabolism. Molecular Nutrition & Food Research, 54(S1), S24–S30.

    Article  CAS  Google Scholar 

  • Roy, F., Boye, J., & Simpson, B. (2010). Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Research International, 43(2), 432–442.

    Article  CAS  Google Scholar 

  • Sarkar, S., & Singhal, R. S. (2011). Esterification of guar gum hydrolysate and gum arabic with n−octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydrate Polymers, 86(4), 1723–1731.

    Article  CAS  Google Scholar 

  • Sathe, S. K., Deshpande, S., Salunkhe, D., & Rackis, J. J. (1984). Dry beans of phaseolus. A review. Part 1. Chemical composition: proteins. Critical Reviews in Food Science and Nutrition, 20(1), 1–46.

    Article  CAS  Google Scholar 

  • Serfert, Y., Drusch, S., & Schwarz, K. (2009). Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chemistry, 113(4), 1106–1112. doi:10.1016/j.foodchem.2008.08.079.

    Article  CAS  Google Scholar 

  • Sourdet, S., Relkin, P., & César, B. (2003). Effects of milk protein type and pre-heating on physical stability of whipped and frozen emulsions. Colloids and Surfaces B: Biointerfaces, 31(1), 55–64.

    Article  CAS  Google Scholar 

  • Taherian, A. R., Fustier, P., & Ramaswamy, H. S. (2007). Effects of added weighing agent and xanthan gum on stability and rheological properties of beverage cloud emulsions formulated using modified starch. Journal of Food Process Engineering, 30(2), 204–224. doi:10.1111/j.1745-4530.2007.00109.x.

    Article  Google Scholar 

  • Taherian, A. R., Mondor, M., Labranche, J., Drolet, H., Ippersiel, D., & Lamarche, F. (2011). Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International, 44(8), 2505–2514. doi:10.1016/j.foodres.2011.01.030.

    Article  CAS  Google Scholar 

  • Toews, R., & Wang, N. (2013). Physicochemical and functional properties of protein concentrates from pulses. Food Research International, 52(2), 445–451.

    Article  CAS  Google Scholar 

  • Tomoskozi, S., Lásztity, R., Haraszi, R., & Baticz, O. (2001). Isolation and study of the functional properties of pea proteins. Nahrung, 45(5), 399–401.

    Article  CAS  Google Scholar 

  • Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282–289.

  • Tonon, R. V., Pedro, R. B., Grosso, C. R., & Hubinger, M. D. (2012). Microencapsulation of flaxseed oil by spray drying: Effect of oil load and type of wall material. Drying Technology, 30(13), 1491–1501.

  • Wang, R., Tian, Z., & Chen, L. (2011). A novel process for microencapsulation of fish oil with barley protein. Food Research International, 44(9), 2735–2741. doi:10.1016/j.foodres.2011.06.013.

    Article  CAS  Google Scholar 

  • Xu, Y. Y., Howes, T., Adhikari, B., & Bhandari, B. (2013). Effects of emulsification of fat on the surface tension of protein solutions and surface properties of the resultant spray-dried particles. Drying Technology, 31(16), 1939–1950. doi:10.1080/07373937.2013.802331.

    Article  CAS  Google Scholar 

  • Yu, J., Ahmedna, M., & Goktepe, I. (2007). Peanut protein concentrate: production and functional properties as affected by processing. Food Chemistry, 103(1), 121–129. doi:10.1016/j.foodchem.2006.08.012.

    Article  CAS  Google Scholar 

  • Zhang, T., Jiang, B., Mu, W., & Wang, Z. (2009). Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl. Food Hydrocolloids, 23(1), 146–152. doi:10.1016/j.foodhyd.2007.12.005.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded in part by the Bill and Melinda Gates Foundation, WA, by the USA Dry Pea and Lentil Council, WA, and Emerging Research Issues internal grant from the Washington State University, College if Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center. We acknowledge Franck Younce, Mahmoudreza Ovissipour, Shreeya Ravishankar, and Ellen Bornhorst for their technical assistances with spray drying, FTIR electrophoresis analysis, and Na+ analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Sablani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, P.R., Tang, J. & Sablani, S.S. Pea Protein Isolates: Novel Wall Materials for Microencapsulating Flaxseed Oil. Food Bioprocess Technol 8, 2418–2428 (2015). https://doi.org/10.1007/s11947-015-1589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1589-6

Keywords

Navigation