Log in

Characteristics of Isolation and Functionality of Protein from Tomato Pomace Produced with Different Industrial Processing Methods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The seeds separated from tomato pomace may contain valuable protein with unique functional properties. The objectives of this research were to study the impact of industrial hot and cold break tomato processes on protein isolation from defatted tomato seed meal and determine the protein-related functional properties of defatted and non-defatted seed meals. The results showed that the high temperature of hot break process denatured the protein, resulting in the lower protein extraction yield from 9.07 % to 26.29 % for defatted hot break tomato seed (DHTS) compared to from 25.60 % to 32.56 % for defatted cold break tomato seed (DCTS) under various extraction conditions. Hot break process also significantly influenced protein-related functional properties of seed meals. Compared to DCTS, DHTS had higher water absorption capacity (WAC) and oil absorption capacity (OAC) based on the protein weight in the seed meal, but lower emulsifying ability (EA), emulsifying stability (ES), foaming capacity (FC), and foaming stability (FS) based on the whole seed sample weight. When compared to commercial soybean protein isolate (SP), the meals of hot break tomato seed (HTS), DHTS, and DCTS showed higher bulk density and WAC values. The FC and FS of tomato meals were inferior while the ES was superior to SP. High alkaline pH was beneficial to the protein extraction and achieved better EA, ES, FC and FS of all the samples. The results indicated that tomato seed meals have a great potential to be used as functional food ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahenkora, K., Dadzie, M., & Osei-Bonsu, P. (1999). Composition and functional properties of raw and heat processed velvet bean (Mucuna pruriens (L.) DC. var utilis) flours. International Journal of Food Science and Technology, 34(2), 131–135.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official method of analysis (15th ed.). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Barbut, S. (1999). Determining water and fat holding. In G. M. Hall (Ed.), Methods of testing protein functionality (Blackie Academic and Professional, pp. 186–225). New York: USA.

    Google Scholar 

  • Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431.

    Article  CAS  Google Scholar 

  • Campbell, N. F., Shih, F. F., & Marshall, W. E. (1992). Enzymic phosphorylation of soy protein isolate for improved functional properties. Journal of Agricultural and Food Chemistry, 40(3), 403–406.

    Article  CAS  Google Scholar 

  • Cantarelli, P., Regitano-d'Arce, M., & Palma, E. (1993). Physicochemical characteristics and fatty acid composition of tomato seed oils from processing wastes. Scientia Agricola, 50(1), 117–120.

    Article  CAS  Google Scholar 

  • Chandi, G. K., & Sogi, D. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592–597.

    Article  CAS  Google Scholar 

  • Chau, C., & Cheung, P. (1998). Functional properties of flours prepared from three Chinese indigenous legume seeds. Food Chemistry, 61(4), 429–433.

    Article  CAS  Google Scholar 

  • Damodaran, S. (1997). Food proteins: an overview. New York: Marcel Dekker.

    Google Scholar 

  • Del Valle, M., Cámara, M., & Torija, M. (2003). Effect of pomace addition on tomato paste quality. In: ISHS Acta Horticulturae 613: VIII International Symposium on the Processing Tomato (available in ActaHort CD-rom format only. pp. 399–406). Istanbul, Turkey.

  • El Nasri, N. A., & El Tinay, A. (2007). Functional properties of fenugreek (Trigonella foenum graecum) protein concentrate. Food Chemistry, 103(2), 582–589.

    Article  CAS  Google Scholar 

  • FAOSTAT (2010). Crop Statistics. Available at http://faostat3.fao.org/home/index.html#DOWNLOAD. Acessed 18 July 2012.

  • Fidantsi, A., & Doxastakis, G. (2001). Emulsifying and foaming properties of amaranth seed protein isolates. Colloids and Surfaces. B, Biointerfaces, 21(1–3), 119–124.

    Article  CAS  Google Scholar 

  • Germini, A., Paschke, A., & Marchelli, R. (2007). Preliminary studies on the effect of processing on the IgE reactivity of tomato products. Journal of the Science of Food and Agriculture, 87(4), 660–667.

    Article  CAS  Google Scholar 

  • Giami, S. Y., Adindu, M. N., Akusu, M. O., & Emelike, J. N. T. (2000). Compositional, functional and storage properties of flours from raw and heat processed African breadfruit (Treculia africana Decne) seeds. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 55(4), 357–368.

    Article  CAS  Google Scholar 

  • Giami, S. Y., Okonkwo, V. I., & Akusu, M. O. (1994). Chemical composition and functional properties of raw, heat-treated and partially proteolysed wild mango (Irvingia gabonensis) seed flour. Food Chemistry, 49(3), 237–243.

    Article  CAS  Google Scholar 

  • Jitngarmkusol, S., Hongsuwankul, J., & Tananuwong, K. (2008). Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chemistry, 110(1), 23–30.

    Article  CAS  Google Scholar 

  • Khattab, R., & Arntfield, S. (2009). Functional properties of raw and processed canola meal. LWT- Food Science and Technology, 42(6), 1119–1124.

    Article  CAS  Google Scholar 

  • Kinsella, J. E. (1982). Relationships between structure and functional properties of food proteins. In P. F. Fox & J. E. Condon (Eds.), Food proteins, pp 51–103. London: Applied Science Publishers.

    Google Scholar 

  • Kinsella, J. E., & Melachouris, N. (1976). Functional properties of proteins in foods: a survey. Critical Reviews in Food Science and Nutrition, 7(3), 219–280.

    CAS  Google Scholar 

  • Kinsella, J. E., & Morr, C. V. (1984). Milk proteins: physicochemical and functional properties. Critical Reviews in Food Science and Nutrition, 21(3), 197–262.

    CAS  Google Scholar 

  • Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4), 1317–1327.

    Article  CAS  Google Scholar 

  • Kramer, A., & Kwee, W. (1977). Functional and nutritional properties of tomato protein concentrates. Journal of Food Science, 42(1), 207–211.

    Article  CAS  Google Scholar 

  • Latlief, S. J., & Knorr, D. (1983). Tomato seed protein concentrates: effects of methods of recovery upon yield and compositional characteristics. Journal of Food Science, 48(6), 1583–1586.

    Article  CAS  Google Scholar 

  • Liadakis, G. N., Tzia, C., Oreopoulou, V., & Thomopoulos, C. D. (1995). Protein isolation from tomato seed meal, extraction optimization. Journal of Food Science, 60(3), 477–482.

    Article  CAS  Google Scholar 

  • Liadakis, G. N., Tzia, C., Oreopoulou, V., & Thomopoulos, C. D. (1998). Isolation of tomato seed meal proteins with salt solutions. Journal of Food Science, 63(3), 450–453.

    Article  CAS  Google Scholar 

  • Madhusudhan, K., & Singh, N. (1985). Effect of detoxification treatment on the physicochemical properties of linseed proteins. Journal of Agricultural and Food Chemistry, 33(6), 1219–1222.

    Article  CAS  Google Scholar 

  • Mao, X., & Hua, Y. (2012). Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). International Journal of Molecular Sciences, 13(2), 1561–1581.

    Article  CAS  Google Scholar 

  • Mcwatters, K. A. Y. H., & Cherry, J. P. (1977). Emulsification, foaming and protein solubility properties of defatted soybean, peanut, field pea and pecan flours. Journal of Food Science, 42(6), 1444–1447.

    Article  Google Scholar 

  • Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: a review. Food Research International, 39(9), 945–963.

    Article  CAS  Google Scholar 

  • Mune Mune, M. A., Minka, S. R., & Mbome, I. L. (2008). Response surface methodology for optimisation of protein concentratepreparation from cowpea [Vigna unguiculata Walp]. Food Chemistry, 110(3), 735–741.

    Article  Google Scholar 

  • Nassar, A. (2008). Chemical composition and functional properties of prickly pear (Opuntia ficus indica) seeds flour and protein concentrate. World Journal of Dairy and Food Sciences, 3(1), 11–16.

    Google Scholar 

  • Odoemelam, S. (2005). Functional properties of raw and heat processed jackfruit (Artocarpus heterophyllus) flour. Pakistan Journal of Nutrition, 4(6), 366–370.

    Article  Google Scholar 

  • Ogunwolu, S. O., Henshaw, F. O., Mock, H.-P., Santros, A., & Awonorin, S. O. (2009). Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chemistry, 115, 852–858.

    Article  CAS  Google Scholar 

  • Padilla, F., Alvarez, M., & Alfaro, M. (1996). Functional properties of barinas nut flour (Caryodendron orinocense Karst., Euphorbiaceae) compared to those of soybean. Food Chemistry, 57(2), 191–196.

    Article  CAS  Google Scholar 

  • Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716–723.

    Article  CAS  Google Scholar 

  • Peleg, M., & Bagley, E. B. (1983). Physical properties of foods. Westport, Conn.: AVI Pub. Co.

  • Rao, P. U. (1991). Nutrient composition and biological evaluation of defatted tomato (Lycopersicum esculentus) seed cake. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 41(1), 101–106.

    Article  CAS  Google Scholar 

  • Ruiz Celma, A., Cuadros, F., & López-Rodríguez, F. (2009). Characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing, 87(4), 282–291.

    Article  Google Scholar 

  • Sathe, S., Deshpande, S., & Salunkhe, D. (1982). Functional properties of winged bean [Psophocarpus tetragonolobus (L.) DC] proteins. Journal of Food Science, 47(2), 503–509.

    Article  CAS  Google Scholar 

  • Seena, S., & Sridhar, K. (2005). Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International, 38(7), 803–814.

    Article  CAS  Google Scholar 

  • Seikova, I., Simeonov, E., & Ivanova, E. (2004). Protein leaching from tomato seed—experimental kinetics and prediction of effective diffusivity. Journal of Food Engineering, 61(2), 165–171.

    Article  Google Scholar 

  • Sogi, D., Bhatia, R., Garg, S., & Bawa, A. (2005). Biological evaluation of tomato waste seed meals and protein concentrate. Food Chemistry, 89(1), 53–56.

    Article  CAS  Google Scholar 

  • Sogi, D., Garg, S., & Bawa, A. (2002). Functional properties of seed meals and protein concentrates from tomato-processing waste. Journal of Food Science, 67(8), 2997–3001.

    Article  CAS  Google Scholar 

  • Sze-Tao, K., & Sathe, S. (2000). Functional properties and in vitro digestibility of almond (Prunus dulcis L.) protein isolate. Food Chemistry, 69(2), 153–160.

    Article  CAS  Google Scholar 

  • Wu, H., Wang, Q., Ma, T., & Ren, J. (2009). Comparative studies on the functional properties of various protein concentrate preparations of peanut protein. Food Research International, 42(3), 343–348.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was conducted at the Western Regional Research Center of USDA-ARS and Department of Biological and Agricultural Engineering, University of California, Davis, USA. The authors greatly appreciate Dr. Bryan M Jenkins and Dr. Chaowei Yu for the technical support in this research and Pacific Coast Producers and Campbell Soup Company for providing the tomato pomace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongli Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, D., Atungulu, G.G., Pan, Z. et al. Characteristics of Isolation and Functionality of Protein from Tomato Pomace Produced with Different Industrial Processing Methods. Food Bioprocess Technol 7, 532–541 (2014). https://doi.org/10.1007/s11947-013-1057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1057-0

Keywords

Navigation