Log in

Using Multispectral Imaging for Spoilage Detection of Pork Meat

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two different storage conditions: aerobic and modified atmosphere packages as well as under different temperatures. Besides bacterial counts, a sensory panel has judged the spoilage degree of all meat samples into one of three classes. Results showed that the multispectral imaging device was able to classify 76.13 % of the meat samples correctly according to the defined sensory scale. Furthermore, the multispectral camera device was able to predict total viable counts with a standard error of prediction of 7.47 %. It is concluded that there is a good possibility that a setup like the one investigated will be successful for the detection of spoilage degree in minced pork meat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammor, S. A., Argyri, A., & Nychas, G.-J. E. (2009). Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Science, 81, 507–514.

    Article  CAS  Google Scholar 

  • Argyri, A. A., Panagou, E. Z., Tarantilis, P. A., Polysiou, M., & Nychas, G.-J. E. (2010). Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks. Sensors an Actuators B: Chemical, 145, 146–154.

    Article  CAS  Google Scholar 

  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294.

    Article  CAS  Google Scholar 

  • Brooks, J. C., Alvarado, M., Stephens, T. P., Kellermeier, J. D., Tittor, A. W., & Miller, M. F. (2008). Spoilage and safety characteristics of ground beef packaged in traditional and modified atmosphere packages. Journal of Food Protection, 71, 293–301.

    CAS  Google Scholar 

  • Byun, J. S., Min, J. S., Kim, I. S., Kim, J. W., Chung, M. S., & Lee, M. (2003). Comparison of indicators of microbial quality of meat during aerobic cold storage. Journal of Food Protection, 66, 1733–1737.

    Google Scholar 

  • Carstensen, J. M., & Hansen, J. F. (2003). An apparatus and a method of recording an image of an object. Patent family EP1051660, Issued in 2003.

  • Carstensen, J. M., Hansen, M. E., Lassen, N. K., & Hansen, P. W. (2006). Creating surface chemistry maps using multispectral vision technology. In B. Ersbøll, T. M. Jørgensen (Eds.), 9th medical image computing and computer assisted intervention (MICCAI)—workshop on biophotonics imaging for diagnostics and treatment, Institute of Mathematical Modelling. Technical Report-2006-17. Kgs. Lyngby: IMM.

  • Chevallier, S., Bertrand, D., Kohler, A., & Courcoux, P. (2006). Application of PLS-DA in multivariate image analysis. Journal of Chemometrics, 20, 221–229.

    Article  CAS  Google Scholar 

  • Clemmensen, L. H., Hansen, M. E., Ersbøll, B. K., & Frisvad, J. C. (2007). A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging. Journal of Microbiological Methods, 69, 249–255.

    Article  CAS  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37.

    Article  Google Scholar 

  • Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33, 19–34.

    Article  CAS  Google Scholar 

  • Daugaard, S. B., Adler-Nissen, J., & Carstensen, J. M. (2010). New vision technology for multidimensional quality monitoring of continuous frying of meat. Food Control, 21, 626–632.

    Article  CAS  Google Scholar 

  • Dissing, B. S., Clemmesen, L. H., Løje, H., Ersbøll, B. K., &Adler-Nissen, J. (2009). Temporal reflectance changes in vegetables. Proceedings of Institute of Electrical and Electronics Engineers (IEEE) color and reflectance in imaging and computer vision workshop, Kyoto, Japan.

  • Doulgeraki, A. I., Paramithiotis, S., Kagkli, D. M., & Nychas, G.-J. E. (2010). Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiology, 27, 1028–1034.

    Article  Google Scholar 

  • Ellis, D. I., & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science and Technology, 12, 414–424.

    Article  CAS  Google Scholar 

  • Ellis, D. I., Broadhurst, D., Kell, D. B., Rowland, J. J., & Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Applied and Environmental Microbiology, 68, 2822–2828.

    Article  CAS  Google Scholar 

  • Ellis, D. I., Broadhurst, D., & Goodacre, R. (2004). Rapid and quantitative detection of the microbialspoilage of beef by Fourier transforminfraredspectroscopy and machine learning. Analytica Chimica Acta, 514, 193–201.

    Article  CAS  Google Scholar 

  • Ercolini, D., Russo, F., Torrieri, E., Masi, P., & Villani, F. (2006). Changes in the spoilage related microbiota of beef during refrigerated storage under different packaging conditions. Applied and Environmental Microbiology, 72, 4663–4671.

    Article  CAS  Google Scholar 

  • Folm- Hansen, J. (1999). On chromatic and geometrical calibration. Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby.

  • Gomez, D. D., Clemmensen, L. H., Ersbøll, B. K., & Carstensen, J. M. (2007). Precise acquisition and unsupervised segmentation of multi-spectral images. Computer Vision and Image Understanding, 106, 183–193.

    Article  Google Scholar 

  • Gowen, A., O’Donnell, C., Cullen, P., Downey, G., & Frias, J. (2007). Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology, 18, 590–598.

    Article  CAS  Google Scholar 

  • Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26, 65–74.

    Article  Google Scholar 

  • Hansen, M. E., Ersbøll, B. K., Carstensen, J. M., & Nielsen, A. A. (2005). Estimation of critical parameters in concrete production using multispectral vision technology. In: Lecture notes in Computer Science, LNCS3540. Kgs. Lyngby: Informatics and Mathematical Modelling, Technical University of Denmark, DTU. pp. 1228–1237.

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). Elements of statistical learning: data mining, inference and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Koutsoumanis, K., & Taoukis, P. (2006). Meat safety, refrigerated storage and transport: modelling and management. In J. Sofos (Ed.), Improving the safety of fresh meat (pp. 503–561). Cambridge: Woodhead.

    Google Scholar 

  • Koutsoumanis, K. A., Stamatiou, A. P., Skandamis, P., & Nychas, G. J. E. (2006). Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat and validation of the model under dynamic temperature conditions. Applied and Environmental Microbiology, 71, 124–134.

    Article  Google Scholar 

  • Koutsoumanis, K. A., Stamatiou, A. P., Drosinos, E. H., & Nychas, G. J. E. (2008). Control of spoilage microorganisms in minced pork by a self-developed modified atmosphere induced by the respiratory activity of meat microflora. Food Microbiology, 25, 915–921.

    Article  CAS  Google Scholar 

  • Nielsen, A. A. (1999). An extension to a filter implementation of a local quadratic surface for image noise estimation. In: 10th international conference on image analysis and processing, ICIAP’99, 119–124.

  • Nychas, G. J. E., Drosinos, E. H., & Board, R. G. (1998). Chemical changes in stored meat. In R. G. Board & A. R. Davies (Eds.), The microbiology of meat and poultry (pp. 288–326). London: Blackie.

    Google Scholar 

  • Nychas, G. J. E., Skandamis, P. N., Tassou, C. C., & Koutsoumanis, K. P. (2008). Meat spoilage during distribution. Meat Science, 78, 77–89.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Palanichamy, A., Jayas, D., & Holley, R. (2008). Predicting survival of Escherichia coli O157:H7 in dry fermented sausage using artificial neural networks. Journal of Food Protection, 71, 6–12.

    CAS  Google Scholar 

  • Papadopoulou, O., Panagou, E. Z., Tassou, C. C., & Nychas, G.-J. E. (2011). Contribution of Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of minced pork meat spoilage. Food Research International, 44, 3264–3271.

    Article  CAS  Google Scholar 

  • Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Letters in Applied Bacteriology, 81, 501–508.

    CAS  Google Scholar 

  • Sánchez, A. J., Albarracin, W., Grau, R., Ricolfe, C., & Barat, J. M. (2008). Control of ham salting by using image segmentation. Food Control, 19, 135–142.

    Article  Google Scholar 

  • Skandamis, P. N., & Nychas, G.-J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79, 35–45.

    Article  CAS  Google Scholar 

  • Stien, L. H., Kiessling, A., & Manne, F. (2007). Rapid estimation of fat content in salmon fillets by colour image analysis. Journal of Food Composition and Analysis, 20, 73–79.

    Article  CAS  Google Scholar 

  • Taghizadeh, M., Gowen, A., Ward, P., & O’Donnell, C. P. (2010). Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricusbisporus) stored in different packaging films. Innovative Food Science & Emerging Technologies, 11, 423–431.

    Article  CAS  Google Scholar 

  • Tran, T. N., Wehrens, R., & Buydens, L. M. (2005). Clustering multispectral images: a tutorial. Chemometrics and Intelligent Laboratory Systems, 77, 3–17.

    Article  CAS  Google Scholar 

  • Videometer (2009). Testimonial: Kopenhagen Fur, April 19, 2007. <http:// www.videometer.com/news/artikler2007/Testimonial_Kopenhagen_Fur.html> Accessed 01.09.09.

Download references

Acknowledgments

The authors acknowledge the Symbiosis-EU (www.symbiosis-eu.net) project (no. 211638) financed by the European Commission under the 7th Framework Programme for RTD. The information in this document reflects only the authors’ views, and the Community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Skovlund Dissing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dissing, B.S., Papadopoulou, O.S., Tassou, C. et al. Using Multispectral Imaging for Spoilage Detection of Pork Meat. Food Bioprocess Technol 6, 2268–2279 (2013). https://doi.org/10.1007/s11947-012-0886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0886-6

Keywords

Navigation