Log in

Modeling Volatile Organic Compounds Released by Bovine Fresh Meat Using an Integration of Solid Phase Microextraction and Databases

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The influence of volatile organic compounds is often regarded as a critical factor of food flavor quality. Nevertheless, information about the biochemical origin of odorants is not totally available. Quantification of volatile compounds in meat is not easy, but a new approach that helps is the use of GC/MS–SPME. This technique can generate large-scale data sets that allow for the development of computational technologies for better integration and biochemical interpretation. Volatile organic compounds of bovine fresh meat samples were measured by GC/MS–SPME, using four SPME fibers. The compounds were analyzed using an integration of chemical and biological database systems (NIST and KEGG, respectively). Twelve metabolic pathways were identified. A metabolic network model was constructed using graph elements, linking pathways through a central branch mediated by glycolysis. Experimental data indicated that post-mortem glycolysis is associated with the release of volatile compounds in fresh meat. The proposed technique could be used to study possible sources of biochemical compounds in meat to be applied in food analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo, C., Sánchez, E., Young, M. E., & Simpson, R. (2003). Prediction correlation of vapor pressure for methyl jasmonate. Journal of Food Engineering, 59(4), 431–433.

    Article  Google Scholar 

  • Acevedo, C., Sánchez, E., & Young, M. E. (2007). Heat and mass transfer coefficients for natural convection in fruit packages. Journal of Food Engineering, 80(2), 655–661.

    Article  CAS  Google Scholar 

  • Acevedo, C. A., Sánchez, E. Y., Reyes, J. G., & Young, M. E. (2010). Volatile profiles of human skin cell cultures in different degrees of senescence. Journal of Chromatography B, 878(3), 449–455.

    Article  CAS  Google Scholar 

  • Almonacid, S. F., Nájera, A. L., Young, M. E., Simpson, R. J., & Acevedo, C. A. (2010). A comparative study of stout-beer batch-fermentation using free and microencapsulated yeasts. Food and Bioprocess Technology. doi:10.1007/s11947-010-0379-4.

    Google Scholar 

  • Balasubramanian, S., & Panigrahi, S. (2011). Solid-phase microextraction (SPME) techniques for quality characterization of food products: A review. Food and Bioprocess Technology, 4(1), 1–26.

    Article  CAS  Google Scholar 

  • Bernier, U., Kline, D., Barnard, D., Schreck, E., & Yost, R. (2000). Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Analytical Chemistry, 72(4), 747–756.

    Article  CAS  Google Scholar 

  • Choe, J. H., Choi, Y. M., Lee, S. H., Shin, H. G., Ryu, Y. C., Hong, K. C., et al. (2008). The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Science, 80(2), 355–362.

    Article  CAS  Google Scholar 

  • Deng, C., Zhang, X., & Li, N. (2004). Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography–mass spectrometry. Journal of Chromatography B, 808(2), 269–277.

    Article  CAS  Google Scholar 

  • Elmore, J. S., Mottram, D. S., & Hierro, E. (2001). Two-fibre solid-phase microextraction combined with gas chromatography–mass spectrometry for the analysis of volatile aroma compounds in cooked pork. Journal of Chromatography A, 905(1–2), 233–240.

    Article  CAS  Google Scholar 

  • Elmore, J. S., Warren, H. E., Mottram, D. S., Scollan, N. D., Enser, M., Richardson, R. I., et al. (2004). A comparison of the aroma volatiles and fatty acid compositions of grilled beef muscle from Aberdeen Angus and Holstein-Friesian steers fed diets based on silage or concentrates. Meat Science, 68(1), 27–33.

    Article  CAS  Google Scholar 

  • Elmore, J. S., Cooper, S. L., Enser, M., Mottram, D. S., Sinclair, L. A., Wilkinson, R. G., et al. (2005). Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Science, 69(2), 233–242.

    Article  CAS  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C., & Wold, S. (2006). Multi and megavariate data analysis. Part I: Basic principles and applications (3rd ed.). Umea: Umetrics Academy.

    Google Scholar 

  • Estevez, M., Morcuende, D., Ventanas, S., & Cava, R. (2003). Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME–GC–MS. Journal of Agricultural and Food Chemistry, 51(11), 3429–3435.

    Article  CAS  Google Scholar 

  • Garcia-Esteban, M., Ansorena, D., Astiasarán, I., & Ruiz, J. (2004). Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta, 64(2), 458–466.

    Article  CAS  Google Scholar 

  • Gille, C., Hoffmann, S., & Holzhütter, H. G. (2007). METANNOGEN: Compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Systems Biology, 1, 5.

    Article  Google Scholar 

  • Hierro, E., Hoz, L., & Ordóñez, J. A. (2004). Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species. Food Chemistry, 85(4), 649–657.

    Article  CAS  Google Scholar 

  • Insausti, K., Goñi, V., Petri, E., Gorraiz, C., & Beriain, M. J. (2005). Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds. Meat Science, 70(1), 83–90.

    Article  CAS  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30.

    Article  CAS  Google Scholar 

  • Martin, D., Antequera, T., Muriel, E., Perez-Palacios, T., & Ruiz, J. (2009). Volatile compounds of fresh and dry-cured loin as affected by dietary conjugated linoleic acid and monounsaturated fatty acids. Meat Science, 81(3), 549–556.

    Article  CAS  Google Scholar 

  • Moutselos, K., Kanaris, I., Chatziioannou, A., Maglogiannis, I., & Kolisis, F. N. (2009). KEGGconverter: A tool for the in-silico modelling of metabolic networks of the KEGG pathways database. BMC Bioinformatics, 10, 324.

    Article  Google Scholar 

  • Namiesnik, J., Zygmunt, B., & Jastrzebska, A. (2000). Application of solid-phase microextraction for determination of organic vapours in gaseous matrices. Journal of Chramatography A, 885(1–2), 405–418.

    Article  CAS  Google Scholar 

  • Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., et al. (2008). KEGG Atlas map** for global analysis of metabolic pathways. Nucleic Acids Research, 36, W423–W426.

    Article  CAS  Google Scholar 

  • Osorio, M. T., Zumalacárregui, J. M., Cabeza, E. A., Figueira, A., & Mateo, J. (2008). Effect of rearing system on some meat quality traits and volatile compounds of suckling lamb meat. Small Ruminant Research, 78(1–3), 1–12.

    Article  Google Scholar 

  • Rivas-Cañedo, A., Fernández-García, E., & Nuñez, M. (2009). Volatile compounds in fresh meats subjected to high pressure processing: Effect of the packaging material. Meat Science, 81(2), 321–328.

    Article  Google Scholar 

  • Vasta, V., Ratel, J., & Engel, E. (2007). Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. Journal of Agricultural and Food Chemistry, 55(12), 4630–4639.

    Article  CAS  Google Scholar 

  • Vasta, V., Jerónimo, E., Brogna, M. R., Dentinho, T. P., Biondi, L., Silva, J. S., et al. (2010). The effect of grape seed extract or Cistus ladanifer L. on muscle volatile compounds of lambs fed dehydrated lucerne supplemented with oil. Food Chemistry, 119(4), 1339–1345.

    Article  CAS  Google Scholar 

  • Ventanas, S., Estevez, M., Andrés, A. I., & Ruiz, J. (2008). Analysis of volatile compounds of Iberian dry-cured loins with different intramuscular fat contents using SPME–DED. Meat Science, 79(1), 172–180.

    Article  CAS  Google Scholar 

  • Watanabe, A., Ueda, Y., Higuchi, M., & Shiba, N. (2008). Analysis of volatile compounds in beef fat by dynamic-headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. Journal of Food Science, 73(5), C420–C425.

    Article  CAS  Google Scholar 

  • Zhang, J. D., & Wiemann, S. (2009). KEGGgraph: A graph approach to KEGG pathway in R and bioconductor. Bioinformatics, 25(11), 1470–1471.

    Article  CAS  Google Scholar 

  • Zhang, Z., Cai, J., Ruan, G., & Li, G. (2005). The study of fingerprint characteristics of the emanations from human arm skin using the original sampling system by SPME–GC/MS. Journal of Chromatography B, 822(1–2), 244–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank CONICYT from Chile by FONDECYT Grant 11090051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian A. Acevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acevedo, C.A., Creixell, W., Pavez-Barra, C. et al. Modeling Volatile Organic Compounds Released by Bovine Fresh Meat Using an Integration of Solid Phase Microextraction and Databases. Food Bioprocess Technol 5, 2557–2567 (2012). https://doi.org/10.1007/s11947-011-0571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0571-1

Keywords

Navigation