Log in

Arrhythmogenesis: a Roadblock to Cardiac Stem Cell Therapy

  • Regenerative Medicine and Stem-cell Therapy (SM Wu and P Hsieh, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Despite significant advances in the treatment of ischemic heart disease (IHD), it remains the leading cause of mortality worldwide. Undoubtedly, methods for regenerating the injured human heart are urgently needed, and whilst exciting progress has been made from utilizing stem cell therapy for cardiac regeneration, several major challenges still remain. In particular, one major safety issue is the occurrence of potentially life-threatening ventricular arrhythmias after cell therapy. Several drivers may be responsible for this, ranging from the potential inherent arrhythmogenicity of delivered stem cells to that of the underlying IHD. Therefore, it is imperative to thoroughly assess the risk-to-benefit ratio of such treatments prior to the clinical application. As such, despite the considerable progress made in stem cell therapy over the past decades, many obstacles still lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as:•Of importance ••Of major importance

  1. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–8.

    Article  CAS  PubMed  Google Scholar 

  2. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–82.

    Article  CAS  PubMed  Google Scholar 

  3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:1810–52.

    Article  PubMed  Google Scholar 

  4. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–8.

    Article  PubMed  Google Scholar 

  5. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine. 2003;9:1195–201.

    Article  CAS  PubMed  Google Scholar 

  6. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  7. Amado LC, Saliaris AP, Schuleri KH, St John M, **e JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Nat Acad SciUSA. 2005;102:11474–9.

    Article  CAS  Google Scholar 

  8. Hashemi SM, Ghods S, Kolodgie FD, Parcham-Azad K, Keane M, Hamamdzic D, et al. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J. 2008;29:251–9.

    Article  PubMed  Google Scholar 

  9. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7. This is the first study to show that large scale human embryonic stem cell derived cardiomyocytes (hESC-CM) is feasible and able to provide sufficient myocardial regeneration. Nevertheless, it raised the safety concern of cell therapy that non-fatal ventricular arrhythmias were observed in the hESC-CM-treated macaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine. 2001;7:430–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol. 2008;103:525–36.

    Article  PubMed  Google Scholar 

  13. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111:150–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lin YD, Yeh ML, Yang YJ, Tsai DC, Chu TY, Shih YY, et al. Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation. 2010;122:S132–41.

    Article  CAS  PubMed  Google Scholar 

  15. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    Article  PubMed  Google Scholar 

  16. Meyer GP, Wollert KC, Lotz J, Pirr J, Rager U, Lippolt P, et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J. 2009;30:2978–84.

    Article  PubMed  Google Scholar 

  17. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pokushalov E, Romanov A, Chernyavsky A, Larionov P, Terekhov I, Artyomenko S, et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3:160–8.

    Article  PubMed  Google Scholar 

  19. Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA, et al. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J. 2011;161:1078–87.e3.

    Article  PubMed  Google Scholar 

  20. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandes S, Amirault JC, Lande G, Nguyen JM, Forest V, Bignolais O, et al. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res. 2006;69:348–58.

    Article  CAS  PubMed  Google Scholar 

  22. Coppen SR, Fukushima S, Shintani Y, Takahashi K, Varela-Carver A, Salem H, et al. A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation. 2008;118(suppl):S-138–44.

    Article  CAS  Google Scholar 

  23. Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, et al. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol. 2007;42:304–14.

    Article  CAS  PubMed  Google Scholar 

  24. Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest. 2004;114:775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kolettis TM. Arrhythmogenesis after cell transplantation post-myocardial infarction: four burning questions—and some answers. Cardiovasc Res. 2006;69:299–301.

    Article  CAS  PubMed  Google Scholar 

  26. Itabashi Y, Miyoshi S, Yuasa S, Fujita J, Shimizu T, Okano T, et al. Analysis of the electrophysiological properties and arrhythmias in directly contacted skeletal and cardiac muscle cell sheets. Cardiovasc Res. 2005;67:561–70.

    Article  CAS  PubMed  Google Scholar 

  27. Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature. 2007;450:819–24.

    Article  CAS  PubMed  Google Scholar 

  28. Fouts K, Fernandes B, Mal N, Liu J, Laurita KR. Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm. 2006;3:452–61.

    Article  PubMed  Google Scholar 

  29. Hagège AA, Marolleau JP, Vilquin JT, Alhéritière A, Peyrard S, Duboc D, et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation. 2006;114(suppl):I-108–13.

    Google Scholar 

  30. Gavira JJ, Herreros J, Perez A, Garcia-Velloso MJ, Barba J, Martin-Herrero F, et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg. 2006;131:799–804.

    Article  PubMed  Google Scholar 

  31. Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeźniczak J, Rozwadowska N, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J. 2004;148:531–7.

    Article  PubMed  Google Scholar 

  32. Dib N, Michler RE, Pagani FD, Wright S, Kereiakes DJ, Lengerich R, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation. 2005;112:1748–55.

    Article  PubMed  Google Scholar 

  33. Veltman CE, Soliman OI, Geleijnse ML, Vletter WB, Smits PC, ten Cate FJ, et al. Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy. Eur Heart J. 2008;29:1386–96.

    Article  PubMed  Google Scholar 

  34. Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Rozwadowska N, Ka[swsl]lmucki P, et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of postinfarction myocardial contractility impairment: the POZNAN trial. Eur Heart J. 2005;26:1188–95.

    Article  PubMed  Google Scholar 

  35. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.

    Article  PubMed  Google Scholar 

  36. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29:1807–18.

    Article  CAS  PubMed  Google Scholar 

  37. Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006;113:1832–41.

    Article  PubMed  Google Scholar 

  38. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 2005;112:1451–61.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Agbulut O, Vandervelde S, Al Attar N, Larghero J, Ghostine S, Leobon B. Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol. 2004;44:258–63.

    Article  Google Scholar 

  40. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664–8.

    Article  CAS  PubMed  Google Scholar 

  41. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668–73.

    Article  CAS  PubMed  Google Scholar 

  42. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol. 2012;59:942–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  44. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63:110–22.

    Article  PubMed  Google Scholar 

  46. Yee K, Malliaras K, Kanazawa H, Tseliou E, Cheng K, Luthringer DJ, et al. Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy. PLoS ONE. 2014;10(1371).

  47. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye L, Chang YH, **ong Q, Zhang P, Zhang L, Somasundaram P, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 2014;15:750–61. Ye et al. demonstrated that engraftment of human induced pluripotent stem cell-dervied cardiomyocytes into swine infarcted myocardium can improve cardiac function but do not induce ventricular arrhythmias.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Menasché P. Stem cell therapy for heart failure. Are arrhythmias a real safety concern? Circulation. 2009;119:2735–40.

    Article  PubMed  Google Scholar 

  50. Zaman S, Kovoor P. Sudden cardiac death early after myocardial infarction: pathogenesis, risk stratification, and primary prevention. Circulation. 2014;129:2426–35.

    Article  PubMed  Google Scholar 

  51. Benito B, Josephson ME. Ventricular tachycardia in coronary artery disease. Rev Esp Cardiol. 2012;65:939–55.

    Article  PubMed  Google Scholar 

  52. Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114:511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen HS, Kim C, Mercola M. Electrophysiological challenges of cell-based myocardial repair. Circulation. 2009;120:2496–508.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004;22:1282–9.

    Article  CAS  PubMed  Google Scholar 

  56. O’Gara PT et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e362–425.

    Article  PubMed  Google Scholar 

  57. Lin YD, Ko MC, Wu ST, Li SF, Hu JF, Lai YJ, et al. A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater Sci. 2014;2:567–80. This study showed the therapeutic efficacy of a nanopatterned cell-seeded cardiac patch. It also proved the significance of cell-seeded cardiac patch in myocardial repair for the possible future clinical application.

    Article  CAS  PubMed  Google Scholar 

  58. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, **ao Y, Zhang B, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods. 2013;10:781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim C, Majdi M, **a P, Wei KA, Talantova M, Spiering S, et al. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 2010;19:783–95.

    Article  CAS  PubMed  Google Scholar 

  60. Lee DS, Chen JH, Lundy DJ, Liu CH, Hwang SM, Pabon L, et al. Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes. Cell Rep. 2015;12:1960–7. Lee et al. demonstrated that delivery of selected microRNAs can improve in vitro maturation of embryonic stem cell-derived cardiomyocytes.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. H. Hsieh MD, PhD.

Ethics declarations

Conflict of Interest

Yen-Wen Liu, Chi-Ting Su, Christopher Y.T. Yen, and Li-Jen Lin each declare no potential conflicts of interest.

Patrick C.H. Hsieh reports research funding from AstraZeneca. Dr. Hsieh is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine and Stem-cell Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YW., Su, CT., Yen, C.Y.T. et al. Arrhythmogenesis: a Roadblock to Cardiac Stem Cell Therapy. Curr Treat Options Cardio Med 18, 61 (2016). https://doi.org/10.1007/s11936-016-0481-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0481-7

Keywords

Navigation