Log in

Molecular Subtypes of Prostate Cancer

  • Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will examine the taxonomy of PCa subclasses across disease states, explore the relationship among specific alterations, and highlight current clinical relevance.

Recent Findings

Prostate cancer (PCa) is driven by multiple genomic alterations, with distinct patterns and clinical implications. Alterations occurring early in the timeline of the disease define core subtypes of localized, treatment-naive PCa. With time, an increase in number and severity of genomic alterations adds molecular complexity and is associated with progression to metastasis. These later events are not random and are influenced by the underlying subclasses.

Summary

All the subclasses of localized disease initially respond to androgen deprivation therapy (ADT), but with progression to castrate-resistant PCa (CRPC), mechanisms of resistance against ADT shift the molecular landscape. In CRPC, resistance mechanisms largely define the biology and sub-classification of these cancers, while clinical relevance and opportunities for precision therapy are still being defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014;46(10):1103–9. https://doi.org/10.1038/ng.3094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Brawer MK. Prostatic intraepithelial neoplasia: an overview. Rev Urol. 2005;7(Suppl 3):S11–8.

    PubMed  PubMed Central  Google Scholar 

  4. Damber JE, Aus G. Prostate cancer. Lancet. 2008;371(9625):1710–21. https://doi.org/10.1016/S0140-6736(08)60729-1.

    Article  PubMed  Google Scholar 

  5. Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90(10):766–71.

    Article  PubMed  CAS  Google Scholar 

  6. Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180–92. https://doi.org/10.1111/j.1742-1241.2011.02799.x.

    Article  PubMed  CAS  Google Scholar 

  7. Schweizer MT, Yu EY. Persistent androgen receptor addiction in castration-resistant prostate cancer. J Hematol Oncol. 2015;8:128. https://doi.org/10.1186/s13045-015-0225-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Koryakina Y, Ta HQ, Gioeli D. Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer. 2014;21(4):T131–45. https://doi.org/10.1530/ERC-13-0472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. •• Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28. https://doi.org/10.1016/j.cell.2015.05.001. This study provided clinical molecular analysis of advanced prostate cancers and reported the molecular alterations that add heterogeneity observed in patients with CRPC. It also provided potential clinical utility of patients' molecular profiles as predictive markers for the precision therapies.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Salonen AJ, Viitanen J, Lundstedt S, Ala-Opas M, Taari K, Tammela TL, et al. Finnish multicenter study comparing intermittent to continuous androgen deprivation for advanced prostate cancer: interim analysis of prognostic markers affecting initial response to androgen deprivation. J Urol. 2008;180(3):915–9; discussion 9–20. https://doi.org/10.1016/j.juro.2008.05.009.

    Article  PubMed  CAS  Google Scholar 

  11. Aggarwal RR, Feng FY, Small EJ. Emerging categories of disease in advanced prostate cancer and their therapeutic implications. Oncology (Williston Park). 2017;31(6):467–74.

    Google Scholar 

  12. Ritch CR, Cookson MS. Advances in the management of castration resistant prostate cancer. BMJ. 2016;355:i4405. https://doi.org/10.1136/bmj.i4405.

    Article  PubMed  Google Scholar 

  13. Shoag J, Barbieri CE. Clinical variability and molecular heterogeneity in prostate cancer. Asian J Androl. 2016;18(4):543–8. https://doi.org/10.4103/1008-682X.178852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101(12):878–87. https://doi.org/10.1093/jnci/djp122.

    Article  PubMed  PubMed Central  Google Scholar 

  15. D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    Article  PubMed  CAS  Google Scholar 

  16. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77. https://doi.org/10.1016/j.cell.2013.03.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9. https://doi.org/10.1038/ng.2279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Taylor BS, Schultz N, Hieronymus H, Gopalan A, **ao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22. https://doi.org/10.1016/j.ccr.2010.05.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448(7153):595–9. https://doi.org/10.1038/nature06024.

    Article  PubMed  CAS  Google Scholar 

  20. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, **ao Y, et al. Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci U S A. 2014;111(30):11139–44. https://doi.org/10.1073/pnas.1411446111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lalonde E, Ishkanian AS, Sykes J, Fraser M, Ross-Adams H, Erho N, et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol. 2014;15(13):1521–32. https://doi.org/10.1016/S1470-2045(14)71021-6.

    Article  PubMed  Google Scholar 

  22. •• Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25. https://doi.org/10.1016/j.cell.2015.10.025. This study provided clinical molecular analysis of early onset prostate cancers and reported the molecular alterations that add heterogeneity observed in patients with primary prostate cancer, which regulates the pathogenesis of this disease.

    Article  CAS  Google Scholar 

  23. Borno ST, Fischer A, Kerick M, Falth M, Laible M, Brase JC, et al. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2012;2(11):1024–35. https://doi.org/10.1158/2159-8290.CD-12-0041.

    Article  PubMed  CAS  Google Scholar 

  24. Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-Sundaram S, et al. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res. 2011;21(7):1028–41. https://doi.org/10.1101/gr.119347.110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol. 2009;56(2):275–86. https://doi.org/10.1016/j.eururo.2009.04.036.

    Article  PubMed  CAS  Google Scholar 

  26. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8. https://doi.org/10.1126/science.1117679.

    Article  PubMed  CAS  Google Scholar 

  27. Gasi Tandefelt D, Boormans J, Hermans K, Trapman J. ETS fusion genes in prostate cancer. Endocr Relat Cancer. 2014;21(3):R143–52. https://doi.org/10.1530/ERC-13-0390.

    Article  PubMed  CAS  Google Scholar 

  28. Hermans KG, van der Korput HA, van Marion R, van de Wijngaart DJ, Ziel-van d. Made a, Dits NF et al. truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res. 2008;68(18):7541–9. https://doi.org/10.1158/0008-5472.CAN-07-5930.

    Article  PubMed  CAS  Google Scholar 

  29. Joshua AM, Evans A, Van der Kwast T, Zielenska M, Meeker AK, Chinnaiyan A, et al. Prostatic preneoplasia and beyond. Biochim Biophys Acta. 2008;1785(2):156–81. https://doi.org/10.1016/j.bbcan.2007.12.001.

    Article  PubMed  CAS  Google Scholar 

  30. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008;8(7):497–511. https://doi.org/10.1038/nrc2402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol. 2011;29(27):3659–68. https://doi.org/10.1200/JCO.2011.35.1916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 2008;68(1):73–80. https://doi.org/10.1158/0008-5472.CAN-07-5352.

    Article  PubMed  CAS  Google Scholar 

  33. Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res. 2008;68(9):3094–8. https://doi.org/10.1158/0008-5472.CAN-08-0198.

    Article  PubMed  CAS  Google Scholar 

  34. Lapointe J, Kim YH, Miller MA, Li C, Kaygusuz G, van de Rijn M, et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod Pathol. 2007;20(4):467–73. https://doi.org/10.1038/modpathol.3800759.

    Article  PubMed  CAS  Google Scholar 

  35. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene. 2005;24(23):3847–52. https://doi.org/10.1038/sj.onc.1208518.

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66(17):8347–51. https://doi.org/10.1158/0008-5472.CAN-06-1966.

    Article  PubMed  CAS  Google Scholar 

  37. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, et al. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol. 2007;60(11):1238–43. https://doi.org/10.1136/jcp.2006.043810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer. 2007;97(12):1690–5. https://doi.org/10.1038/sj.bjc.6604054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 2009;69(4):1400–6. https://doi.org/10.1158/0008-5472.CAN-08-2467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomark Prev. 2012;21(9):1497–509. https://doi.org/10.1158/1055-9965.EPI-12-0042.

    Article  Google Scholar 

  41. Shaikhibrahim Z, Wernert N. ETS transcription factors and prostate cancer: the role of the family prototype ETS-1 (review). Int J Oncol. 2012;40(6):1748–54. https://doi.org/10.3892/ijo.2012.1380.

    Article  PubMed  CAS  Google Scholar 

  42. Vitari AC, Leong KG, Newton K, Yee C, O'Rourke K, Liu J, et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature. 2011;474(7351):403–6. https://doi.org/10.1038/nature10005.

    Article  PubMed  CAS  Google Scholar 

  43. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006;66(7):3396–400. https://doi.org/10.1158/0008-5472.CAN-06-0168.

    Article  PubMed  CAS  Google Scholar 

  44. Carver BS, Tran J, Chen Z, Carracedo-Perez A, Alimonti A, Nardella C, et al. ETS rearrangements and prostate cancer initiation. Nature. 2009;457(7231):E1; discussion E2–3–E1; discussion E3. https://doi.org/10.1038/nature07738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia. 2010;12(7):590–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. van Leenders GJ, Boormans JL, Vissers CJ, Hoogland AM, Bressers AA, Furusato B, et al. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol. 2011;24(8):1128–38. https://doi.org/10.1038/modpathol.2011.65.

    Article  PubMed  CAS  Google Scholar 

  47. Brase JC, Johannes M, Mannsperger H, Falth M, Metzger J, Kacprzyk LA, et al. TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer. 2011;11:507. https://doi.org/10.1186/1471-2407-11-507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kron KJ, Murison A, Zhou S, Huang V, Yamaguchi TN, Shiah YJ, et al. TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet. 2017;49(9):1336–45. https://doi.org/10.1038/ng.3930.

    Article  PubMed  CAS  Google Scholar 

  49. Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y, et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 2013;27(6):683–98. https://doi.org/10.1101/gad.211011.112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Aytes A, Mitrofanova A, Kinkade CW, Lefebvre C, Lei M, Phelan V, et al. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc Natl Acad Sci U S A. 2013;110(37):E3506–15. https://doi.org/10.1073/pnas.1303558110.

    Article  PubMed  PubMed Central  Google Scholar 

  51. • Fisher KW, Montironi R, Lopez Beltran A, Moch H, Wang L, Scarpelli M, et al. Molecular foundations for personalized therapy in prostate cancer. Curr Drug Targets. 2015;16(2):103–14. The study emphasized on the potential clinical utility of genomic profiles as predictive markers for the targeted therapies.

    Article  PubMed  CAS  Google Scholar 

  52. Blattner M, Lee DJ, O'Reilly C, Park K, MacDonald TY, Khani F, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia. 2014;16(1):14–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A. 2013;110(17):6997–7002. https://doi.org/10.1073/pnas.1304502110.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khani F, Mosquera JM, Park K, Blattner M, O'Reilly C, MacDonald TY, et al. Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin Cancer Res. 2014;20(18):4925–34. https://doi.org/10.1158/1078-0432.CCR-13-2265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Garcia-Flores M, Casanova-Salas I, Rubio-Briones J, Calatrava A, Dominguez-Escrig J, Rubio L, et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur J Cancer. 2014;50(17):2994–3002. https://doi.org/10.1016/j.ejca.2014.08.009.

    Article  PubMed  CAS  Google Scholar 

  56. An J, Wang C, Deng Y, Yu L, Huang H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 2014;6(4):657–69. https://doi.org/10.1016/j.celrep.2014.01.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C, et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res. 2014;74(19):5631–43. https://doi.org/10.1158/0008-5472.CAN-14-0476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–51. https://doi.org/10.1016/j.ccell.2017.02.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dai X, Gan W, Li X, Wang S, Zhang W, Huang L, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med. 2017;23(9):1063–71. https://doi.org/10.1038/nm.4378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23(9):1055–62. https://doi.org/10.1038/nm.4379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Janouskova H, El Tekle G, Bellini E, Udeshi ND, Rinaldi A, Ulbricht A, et al. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat Med. 2017;23(9):1046–54. https://doi.org/10.1038/nm.4372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, et al. SPOP mutation leads to genomic instability in prostate cancer. elife. 2015;4 https://doi.org/10.7554/eLife.09207.

  63. Shenoy TR, Boysen G, Wang MY, Xu QZ, Guo W, Koh FM, et al. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol. 2017;28(7):1495–507. https://doi.org/10.1093/annonc/mdx165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, et al. The role of hepatocyte nuclear factor-3 alpha (Forkhead box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol. 2003;17(8):1484–507. https://doi.org/10.1210/me.2003-0020.

    Article  PubMed  CAS  Google Scholar 

  65. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–43. https://doi.org/10.1038/nature11125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. ** HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 2013;73(12):3725–36. https://doi.org/10.1158/0008-5472.CAN-12-3468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Prensner JR, Chinnaiyan AM. Metabolism unhinged: IDH mutations in cancer. Nat Med. 2011;17(3):291–3. https://doi.org/10.1038/nm0311-291.

    Article  PubMed  CAS  Google Scholar 

  68. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67. https://doi.org/10.1016/j.ccr.2010.11.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI, et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer. 2009;125(2):353–5. https://doi.org/10.1002/ijc.24379.

    Article  PubMed  CAS  Google Scholar 

  70. Okoye-Okafor UC, Bartholdy B, Cartier J, Gao EN, Pietrak B, Rendina AR, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11(11):878–86. https://doi.org/10.1038/nchembio.1930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Yoshimoto M, Cunha IW, Coudry RA, Fonseca FP, Torres CH, Soares FA, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97(5):678–85. https://doi.org/10.1038/sj.bjc.6603924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41(5):619–24. https://doi.org/10.1038/ng.370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Krohn A, Diedler T, Burkhardt L, Mayer PS, De Silva C, Meyer-Kornblum M, et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012;181(2):401–12. https://doi.org/10.1016/j.ajpath.2012.04.026.

    Article  PubMed  CAS  Google Scholar 

  74. Yoshimoto M, Ding K, Sweet JM, Ludkovski O, Trottier G, Song KS, et al. PTEN losses exhibit heterogeneity in multifocal prostatic adenocarcinoma and are associated with higher Gleason grade. Mod Pathol. 2013;26(3):435–47. https://doi.org/10.1038/modpathol.2012.162.

    Article  PubMed  CAS  Google Scholar 

  75. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 1999;96(5):2110–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Liu W, Lindberg J, Sui G, Luo J, Egevad L, Li T, et al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene. 2012;31(35):3939–48. https://doi.org/10.1038/onc.2011.554.

    Article  PubMed  CAS  Google Scholar 

  77. Huang S, Gulzar ZG, Salari K, Lapointe J, Brooks JD, Pollack JR. Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness. Oncogene. 2012;31(37):4164–70. https://doi.org/10.1038/onc.2011.590.

    Article  PubMed  CAS  Google Scholar 

  78. Brooks JD, Wei W, Hawley S, Auman H, Newcomb L, Boyer H, et al. Evaluation of ERG and SPINK1 by Immunohistochemical staining and Clinicopathological outcomes in a multi-institutional radical prostatectomy cohort of 1067 patients. PLoS One. 2015;10(7):e0132343. https://doi.org/10.1371/journal.pone.0132343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13(6):519–28. https://doi.org/10.1016/j.ccr.2008.04.016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Stenman UH. Tumor-associated trypsin inhibitor. Clin Chem. 2002;48(8):1206–9.

    PubMed  CAS  Google Scholar 

  81. Wang C, Wang L, Su B, Lu N, Song J, Yang X, et al. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate. 2014;74(7):689–701. https://doi.org/10.1002/pros.22787.

    Article  PubMed  CAS  Google Scholar 

  82. Saad F, Hotte SJ. Guidelines for the management of castrate-resistant prostate cancer. Can Urol Assoc. 2010;4(6):380–4.

    Article  Google Scholar 

  83. •• Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, et al. Prospective genomic profiling of prostate Cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol. 2017;2017:116. https://doi.org/10.1200/PO.17.00029. The study provided clinical genome sequencing from patients at different stages of the disease, and defined how increased burden of genetic alteration dictate prognosis.

    Article  Google Scholar 

  84. Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate Cancer. Eur Urol. 2016;69(6):992–5. https://doi.org/10.1016/j.eururo.2015.11.022.

    Article  PubMed  CAS  Google Scholar 

  85. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate Cancer. N Engl J Med. 2015;373(18):1697–708. https://doi.org/10.1056/NEJMoa1506859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9. https://doi.org/10.1038/nm972.

    Article  PubMed  CAS  Google Scholar 

  87. Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. elife. 2013;2:e00499. https://doi.org/10.7554/eLife.00499.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Duff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol. 2005;19(12):2943–54. https://doi.org/10.1210/me.2005-0231.

    Article  PubMed  CAS  Google Scholar 

  89. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38. https://doi.org/10.1056/NEJMoa1315815.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469–77. https://doi.org/10.1158/0008-5472.CAN-08-0594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994;54(20):5474–8.

    PubMed  CAS  Google Scholar 

  92. Nelson EC, Evans CP, Mack PC, Devere-White RW, Lara PN Jr. Inhibition of Akt pathways in the treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(4):331–9. https://doi.org/10.1038/sj.pcan.4500974.

    Article  PubMed  CAS  Google Scholar 

  93. Parimi V, Goyal R, Poropatich K, Yang XJ. Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol. 2014;2(4):273–85.

    PubMed  PubMed Central  Google Scholar 

  94. Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014;38(6):756–67. https://doi.org/10.1097/PAS.0000000000000208.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1(6):487–95. https://doi.org/10.1158/2159-8290.CD-11-0130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Roudier MP, True LD, Higano CS, Vesselle H, Ellis W, Lange P, et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol. 2003;34(7):646–53.

    Article  PubMed  Google Scholar 

  97. Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004;64(24):9209–16. https://doi.org/10.1158/0008-5472.CAN-04-2442.

    Article  PubMed  CAS  Google Scholar 

  98. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate Cancer is sustained through FGF signaling. Cancer Cell. 2017;32(4):474–89 e6. https://doi.org/10.1016/j.ccell.2017.09.003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the individuals with prostate cancer and their families for their contributions. This work was supported by: US NCI (K08CA187417-01, C.E.B., P50CA211024-01, C.E.B., and R01CA215040-01, C.E.B.), Urology Care Foundation Rising Star in Urology Research Award (C.E.B.), and Damon Runyon Cancer Research Foundation MetLife Foundation Family Clinical Investigator Award (C.E.B.), and the Prostate Cancer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

KA and CEB reviewed the relevant literature and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Christopher E. Barbieri.

Ethics declarations

Conflict of Interest

Kaveri Arora and Christopher E. Barbieri declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, K., Barbieri, C.E. Molecular Subtypes of Prostate Cancer. Curr Oncol Rep 20, 58 (2018). https://doi.org/10.1007/s11912-018-0707-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0707-9

Keywords

Navigation