Log in

“Advances in the Surgical Management of Bone Tumors”

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Bone tumor surgery is extremely challenging, particularly when tumors are located in tightly confined anatomical areas and abutting critical organs and neurovascular structures. Tumor resection requires good cutting accuracy to ensure safety, to achieve negative margins, and to preserve critical structures when possible. The purpose of this paper was to review the literature on the surgical advances for bone tumor surgery published within the last year. The majority of literature identified focused on computer-assisted surgical approaches. There is increasing evidence that 3D navigation plays an important role in the resection of bone tumors. Reconstruction materials that encourage healing and prevent infections are also in development. Optimal care includes execution of a well-developed pre-operative plan using a multidisciplinary approach led by the orthopaedic oncologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fletcher, C.D.M., World Health Organization, and International Agency for Research on Cancer., WHO classification of tumours of soft tissue and bone. 4th ed. World Health Organization classification of tumours. 2013, Lyon: IARC Press. 468 p. Update on the comprehensive classification of tumours of soft tissue and by the world health organization.

  2. Moore AT, Bohlman HR. Metal hip joint: a case report. 1942. Clin Orthop Relat Res. 2006;453:22–4.

    Article  PubMed  Google Scholar 

  3. Italiano A et al. Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol. 2013;24(11):2916–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Evans HL, Ayala AG, Romsdahl MM. Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer. 1977;40(2):818–31.

    Article  CAS  PubMed  Google Scholar 

  5. Sheth DS et al. Chondrosarcoma of the pelvis. Prognostic factors for 67 patients treated with definitive surgery. Cancer. 1996;78(4):745–50.

    Article  CAS  PubMed  Google Scholar 

  6. Pring ME et al. Chondrosarcoma of the pelvis. A review of sixty-four cases. J Bone Joint Surg Am. 2001;83-A(11):1630–42.

    CAS  PubMed  Google Scholar 

  7. Weber KL, Pring ME, Sim FH. Treatment and outcome of recurrent pelvic chondrosarcoma. Clin Orthop Relat Res. 2002;397:19–28.

    Article  PubMed  Google Scholar 

  8. O’Donnell PW et al. Chemotherapy influences the pseudocapsule composition in soft tissue sarcomas. Clin Orthop Relat Res. 2014;472(3):849–55. Neoadjuvant chemotherapy contributed to the development of a pseudocapsule and decreased the number of tumors with malignant cells identified within and beyond the pseudocapsule.

    Article  PubMed  Google Scholar 

  9. Cartiaux O et al. Surgical inaccuracy of tumor resection and reconstruction within the pelvis: an experimental study. Acta Orthop. 2008;79(5):695–702.

    Article  PubMed  Google Scholar 

  10. Delloye C et al. Pelvic reconstruction with a structural pelvic allograft after resection of a malignant bone tumor. J Bone Joint Surg Am. 2007;89(3):579–87.

    Article  PubMed  Google Scholar 

  11. Ding GX, Munro P. Radiation exposure to patients from image guidance procedures and techniques to reduce the imaging dose. Radiother Oncol. 2013;108(1):91–8.

    Article  PubMed  Google Scholar 

  12. Schils F, Schoojans W, Struelens L. The surgeon's real dose exposure during balloon kyphoplasty procedure and evaluation of the cement delivery system: a prospective study. Eur Spine J. 2013;22(8):1758–64.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Allam Y et al. Computer tomography assessment of pedicle screw placement in thoracic spine: comparison between freehand and generic 3D-based navigation techniques. Eur Spine J. 2013;22(3):648–53. In conclusion, 3D navigation-assisted pedicle screw placement proved superior to the freehand technique in the thoracic spine.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Aponte-Tinao LA et al. Multiplanar osteotomies guided by navigation in chondrosarcoma of the knee. Orthopedics. 2013;36(3):e325–30. Concluded that navigation with adequate preoperative planning allows surgeons to intraoperatively reproduce the planned resection with accuracy in complex multiplanary resections.

    Article  PubMed  Google Scholar 

  15. Campos WK, Gasbarrini A, Boriani S. Case report: curetting osteoid osteoma of the spine using combined video-assisted thoracoscopic surgery and navigation. Clin Orthop Relat Res. 2013;471(2):680–5. Reports the intergration of navigation and minimally invasive surgical techniques for the resection of a spinal tumor.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cartiaux O et al. Computer-assisted planning and navigation improves cutting accuracy during simulated bone tumor surgery of the pelvis. Comput Aided Surg. 2013;18(1–2):19–26. Cutting accuracy during simulated bone cuts of the pelvis was improved by using a navigation system.

    Article  PubMed  Google Scholar 

  17. Cartiaux O et al. Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery. Ann Biomed Eng. 2014;42(1):205–13. PSI technology demonstrated an equivalent value-added for bone cutting accuracy compared to navigation and requires no intraoperative registration and tracking.

    Article  PubMed  Google Scholar 

  18. Cengic T et al. Intraoperative gamma hand-held probe navigation in resection of osteoid osteoma tumor–report of two cases. Acta Clin Croat. 2013;52(2):261–5.

    PubMed  Google Scholar 

  19. Gerbers JG, Jutte PC. Hip-sparing approach using computer navigation in periacetabular chondrosarcoma. Comput Aided Surg. 2013;18(1–2):27–32. In this case report, the authors document the safe use of navigation, which allowed the resection to be performed while saving the hip joint.

    Article  CAS  PubMed  Google Scholar 

  20. Jeys L et al. Can computer navigation-assisted surgery reduce the risk of an intralesional margin and reduce the rate of local recurrence in patients with a tumour of the pelvis or sacrum? Bone Joint J. 2013;95-B(10):1417–24. The authors present their experience using navigation-assisted surgery in 31 patients and found it reduced intralesional surgeries for the pelvis and sacrum.

    Article  CAS  PubMed  Google Scholar 

  21. Kang HG, Cho CN, Kim KG. Percutaneous navigation surgery of osteoid osteoma of the femur neck. Minim Invasive Ther Allied Technol. 2014;23(1):58–62.

    Article  PubMed  Google Scholar 

  22. Khan F et al. Haptic robot-assisted surgery improves accuracy of wide resection of bone tumors: a pilot study. Clin Orthop Relat Res. 2013;471(3):851–9.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013;398(4):501–14.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Miyazaki T et al. Chondroblastoma of the distal femur resected through a small fenestra via computed tomography navigation and endoscopy: a case report. J Med Case Rep. 2013;7(1):164.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ritacco LE et al. Accuracy of 3-D planning and navigation in bone tumor resection. Orthopedics. 2013;36(7):e942–50.

    Article  PubMed  Google Scholar 

  26. Ritacco LE et al. Bone tumor resection: analysis about 3D preoperative planning and navigation method using a virtual specimen. Stud Health Technol Inf. 2013;192:1162. Report on a reliable method of evaluating accuracy of the resection using CT reconstructions of the surgical specimen.

    Google Scholar 

  27. Satcher Jr RL. How intraoperative navigation is changing musculoskeletal tumor surgery. Orthop Clin North Am. 2013;44(4):645–56.

    Article  PubMed  Google Scholar 

  28. So TY, Lam YL, Mak KL. Computer-assisted navigation in bone tumor surgery: seamless workflow model and evolution of technique. Clin Orthop Relat Res. 2010;468(11):2985–91.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stubig T et al. 3D-navigated implantation of the glenoid component in reversed shoulder arthroplasty. Feasibility and results in an anatomic study. Int J Med Robot. 2013;9(4):480–5.

    Article  PubMed  Google Scholar 

  30. Sugano N. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg. 2013;5(1):1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wong KC, Kumta SM. Joint-preserving tumor resection and reconstruction using image-guided computer navigation. Clin Orthop Relat Res. 2013;471(3):762–73. Report on 6 cases demonstrating the benefit of navigation in performing joint-preserving tumor resections.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wong KC, Kumta SM. Computer-assisted tumor surgery in malignant bone tumors. Clin Orthop Relat Res. 2013;471(3):750–61. Reports outcomes in 20 patients who underwent navigation-assisted surgery.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wong KC, Kumta SM. Use of computer navigation in orthopedic oncology. Curr Surg Rep. 2014;2:47.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gao Q et al. Modeling of the bony pelvis from MRI using a multi-atlas AE-SDM for registration and tracking in image-guided robotic prostatectomy. Comput Med Imaging Graph. 2013;37(2):183–94.

    Article  PubMed  Google Scholar 

  35. Akiyama T et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res. 2013;31(8):1195–200.

    Article  CAS  PubMed  Google Scholar 

  36. Coathup MJ et al. Long-term survival of cemented distal femoral endoprostheses with a hydroxyapatite-coated collar: a histological study and a radiographic follow-up. J Bone Joint Surg Am. 2013;95(17):1569–75.

    Article  PubMed  Google Scholar 

  37. De Giglio E et al. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal Bioanal Chem. 2013;405(2–3):805–16.

    Article  PubMed  Google Scholar 

  38. Della Valle C et al. A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int J Artif Organs. 2012;35(10):864–75.

    CAS  PubMed  Google Scholar 

  39. Gulati K et al. Biocompatible polymer coating of titanium nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 2012;8(1):449–56.

    Article  CAS  PubMed  Google Scholar 

  40. He P et al. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res A. 2013;101(2):555–66.

    Article  PubMed  Google Scholar 

  41. Jennison T, McNally M, Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater. 2014;10(2):595–603.

    Article  CAS  PubMed  Google Scholar 

  42. Kose N et al. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin Orthop Relat Res. 2013;471(8):2532–9.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Biau D et al. Survival of total knee replacement with a megaprosthesis after bone tumor resection. J Bone Joint Surg Am. 2006;88(6):1285–93.

    Article  PubMed  Google Scholar 

  44. Bruns J et al. Cementless fixation of megaprostheses using a conical fluted stem in the treatment of bone tumours. J Bone Joint Surg (Br). 2007;89(8):1084–7.

    Article  CAS  Google Scholar 

  45. Muller PE et al. Internal hemipelvectomy and reconstruction with a megaprosthesis. Int Orthop. 2002;26(2):76–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Natarajan MV, Mohanlal P, Bose JC. The role of limb salvage surgery and custom megaprosthesis in multiple myeloma. Acta Orthop Belg. 2007;73(4):462–7.

    PubMed  Google Scholar 

  47. Rudert M et al. Partial pelvic resection (internal hemipelvectomy) and endoprosthetic replacement in periacetabular tumors. Oper Orthop Traumatol. 2012;24(3):196–214.

    Article  CAS  PubMed  Google Scholar 

  48. Aponte-Tinao LA et al. The principles and applications of fresh frozen Allografts to bone and joint reconstruction. Orthop Clin North Am. 2014;45(2):257–69.

    Article  PubMed  Google Scholar 

  49. Campanacci DA et al. Vascularised fibular grafts as a salvage procedure in failed intercalary reconstructions after bone tumour resection of the femur. Injury. 2014;45(2):399–404.

    Article  PubMed  Google Scholar 

  50. Harris JD et al. Exceptional functional recovery and return to high-impact sports after Van Nes rotationplasty. Orthopedics. 2013;36(1):e126–31.

    Article  PubMed  Google Scholar 

  51. Agrawal N et al. Outcomes analysis of the role of plastic surgery in extremity sarcoma treatment. J Reconstr Microsurg. 2013;29(2):107–11.

    Article  PubMed  Google Scholar 

  52. Falagas ME et al. Impact of vacuum-assisted closure (VAC) therapy on clinical outcomes of patients with sternal wound infections: a meta-analysis of non-randomized studies. PLoS One. 2013;8(5):e64741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Karlakki S et al. Negative pressure wound therapy for management of the surgical incision in orthopaedic surgery: a review of evidence and mechanisms for an emerging indication. Bone Joint Res. 2013;2(12):276–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hacihaliloglu I et al. Non-iterative partial-view 3D ultrasound to CT registration in ultrasound-guided computer-assisted orthopedic surgery. Int J Comput Assist Radiol Surg. 2013;8(2):157–68.

    Article  PubMed  Google Scholar 

  55. Bullock P et al. Integration of image guidance and rapid prototy** technology in craniofacial surgery. Int J Oral Maxillofac Surg. 2013;42(8):970–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Justin E. Bird declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin E. Bird.

Additional information

This article is part of the Topical Collection on Sarcomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bird, J.E. “Advances in the Surgical Management of Bone Tumors”. Curr Oncol Rep 16, 392 (2014). https://doi.org/10.1007/s11912-014-0392-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-014-0392-2

Keywords

Navigation