Log in

Immunological Issues After Stem Cell-Based β Cell Replacement

  • Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Islet and pancreas transplantation prove that β cell replacement can cure the glycemic derangements in type 1 diabetes (T1D). Induced pluripotent stem cells (iPSCs) can differentiate into functional insulin-producing cells, able to restore normoglycemia in diabetic animal models. iPSCs in particular can be derived from the somatic cells of a person with T1D. This review aims to clarify if it is possible to transplant autologous iPSC-derived β cells without immunosuppression or which are the alternative approaches.

Recent Findings

Several lines of evidence show that autologous iPSC and their derivatives can be immune rejected, and this immunogenicity depends on the reprogramming, the type of cells generated, the transplantation site, and the genetic/epigenetic modifications induced by reprogramming and differentiation. Besides, cell replacement in T1D should keep in consideration also the possibility of autoimmune reaction against autologous stem cell-derived β cells.

Summary

Autologous iPSC-derived β cells could be immunogenic upon transplantation, eliciting both auto and allogeneic immune response. A strategy to protect cells from immune rejection is still needed. This strategy should be efficacious in protecting the grafted cells, but also avoid toxicity and the risk of tumor formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hering BJ, Clarke WR, Bridges ND, et al. (2016) Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care dc151988.

  2. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41.

    Article  PubMed  Google Scholar 

  3. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.

    Article  PubMed  Google Scholar 

  4. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52.

    Article  CAS  PubMed  Google Scholar 

  5. Schulz TC, Young HY, Agulnick AD, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7:e37004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rezania A, Bruin J, Xu J, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014; doi:10.1038/nbt.3033.

  7. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159:428–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  10. • Millman JR, **e C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived b-cells from patients with type 1 diabetes. Nat Commun. 2016; doi:10.1038/ncomms11463. This paper shows the possibility to obtain β cells from iPSC derived from patients with T1D.

  11. Cao J, Li X, Lu X, Zhang C, Yu H, Zhao T. Cells derived from iPSC can be immunogenic—yes or no? Protein Cell. 2014;5:1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao T, Zhang Z-N, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.

    Article  CAS  PubMed  Google Scholar 

  13. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–12.

    Article  CAS  PubMed  Google Scholar 

  14. De Almeida P, Meyer EH, Kooreman NG, et al. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun. 2014;5:3903.

    PubMed  PubMed Central  Google Scholar 

  15. Doi A, Park I-H, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41:1350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011;9:17–23.

    Article  CAS  PubMed  Google Scholar 

  17. Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gore A, Li Z, Fung H-L, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Todorova D, Kim J, Hamzeinejad S, He J, Xu Y. Brief report: immune microenvironment determines the immunogenicity of induced pluripotent stem cell derivatives. Stem Cells. 2016;34:510–5.

    Article  CAS  PubMed  Google Scholar 

  22. Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494:100–4.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao T, Zhang Z, Westenskow PD, et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell. 2015;17:353–9.

    Article  CAS  PubMed  Google Scholar 

  24. •• Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46. The first in human clinical trial with iPSC-derived cells.

    Article  PubMed  Google Scholar 

  25. Lampeter EF, Homberg M, Quabeck K, Schaefer UW, Wernet P, Bertrams J, et al. Transfer of insulin-dependent diabetes between HLA-identical siblings by bone marrow transplantation. Lancet. 1993;341:1243–4.

    Article  CAS  PubMed  Google Scholar 

  26. Sutherland DE, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes. 1989;38(Suppl 1):85–7.

    Article  PubMed  Google Scholar 

  27. Bellin MD, Moran A, Wilhelm JJ, O’Brien TD, Gottlieb PA, Yu L, et al. Development of autoimmune-mediated β cell failure after total pancreatectomy with autologous islet transplantation. Am J Transplant. 2015;15:1991–4.

    Article  CAS  PubMed  Google Scholar 

  28. Piemonti L, Everly MJ, Maffi P, et al. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 diabetes. Diabetes. 2013;62:1656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.

    Article  PubMed  Google Scholar 

  30. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burke GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A, et al. Recurrence of autoimmunity following pancreas transplantation. Curr Diab Rep. 2011;11:413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012;35:1436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson JD, Ao Z, Ao P, et al. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 2009;18:833–45.

    Article  PubMed  Google Scholar 

  34. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11:147–52.

    Article  CAS  PubMed  Google Scholar 

  35. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26:739–40.

    Article  CAS  PubMed  Google Scholar 

  36. Gourraud P-A, Gilson L, Girard M, Peschanski M. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30:180–6.

    Article  CAS  PubMed  Google Scholar 

  37. Barry J, Hyllner J, Stacey G, Taylor CJ, Turner M. Setting up a haplobank: issues and solutions. Curr stem cell reports. 2015;1:110–7.

    Article  Google Scholar 

  38. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13:382–4.

    Article  CAS  PubMed  Google Scholar 

  39. Wilmut I, Leslie S, Martin NG, Peschanski M, Rao M, Trounson A, et al. Development of a global network of induced pluripotent stem cell haplobanks. Regen Med. 2015;10:235–8.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng D, Wang X, Xu R-H. Concise review: one stone for multiple birds: generating universally compatible human embryonic stem cells. Stem Cells. 2016;34:2269–75.

    Article  CAS  PubMed  Google Scholar 

  41. Deuse T, Seifert M, Phillips N, et al. Immunobiology of naïve and genetically modified HLA-class-I-knockdown human embryonic stem cells. J Cell Sci. 2011;124:3029–37.

    Article  CAS  PubMed  Google Scholar 

  42. Deuse T, Seifert M, Phillips N, et al. Human leukocyte antigen I knockdown human embryonic stem cells induce host ignorance and achieve prolonged xenogeneic survival. Circulation. 2011;124:S3–9.

    Article  PubMed  Google Scholar 

  43. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA. Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl Med. 2015;4:1234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng Q, Shabrani N, Thon JN, et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports. 2014;3:817–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karabekian Z, Ding H, Stybayeva G, et al. HLA class I depleted hESC as a source of hypoimmunogenic cells for tissue engineering applications. Tissue Eng Part A. 2015;21:2559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H, Li Y, Lin X, Cui D, Cui C, Li H, et al. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol Res. 2015;48:59.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao L, Teklemariam T, Hantash BM. Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res. 2014;13:342–54.

    Article  CAS  PubMed  Google Scholar 

  48. Rong Z, Wang M, Hu Z, et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell. 2014;14:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Vos P, Spasojevic M, Faas MM. Treatment of diabetes with encapsulated islets. Adv Exp Med Biol. 2010;670:38–53.

    Article  PubMed  Google Scholar 

  50. Vaithilingam V, Tuch BE. Islet transplantation and encapsulation: an update on recent developments. Rev Diabet Stud. 2011;8:51–67.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014;67-68:35–73.

    Article  CAS  PubMed  Google Scholar 

  52. Desai TA, West T, Cohen M, Boiarski T, Rampersaud A. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev. 2004;56:1661–73.

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi H. Application of a novel B cell line MIN6 to a mesh-reinforced polyvinyl alcohol hydrogel tube and three-layer agarose microcapsules: an in vitro study. Cell Transplant. 1996;5:S65–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lee JI, Nishimura R, Sakai H, Sasaki N, Kenmochi T. A newly developed immunoisolated bioartificial pancreas with cell sheet engineering. Cell Transplant. 2008;17:51–9.

    Article  PubMed  Google Scholar 

  55. Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2016; doi:10.1038/nrd.2016.232.

  56. Ward WK. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2008;2:768–77.

    Article  Google Scholar 

  57. Johannesson B, Sui L, Freytes DO, Creusot RJ, Egli D. Toward beta cell replacement for diabetes. EMBO J. 2015;34:841–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–10.

    Article  CAS  PubMed  Google Scholar 

  59. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care. 2006;29:137–8.

    Article  PubMed  Google Scholar 

  60. Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34:2406–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res. 1995;29:1517–24.

    Article  CAS  PubMed  Google Scholar 

  62. Motté E, Szepessy E, Suenens K, Stangé G, Bomans M, Jacobs-Tulleneers-Thevissen D, et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab. 2014;307:E838–46.

    Article  PubMed  Google Scholar 

  63. Bruin JE, Rezania A, Xu J, Narayan K, Fox JK, O’Neil JJ, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia. 2013;56:1987–98.

    Article  PubMed  Google Scholar 

  64. Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Nadler JL. Survival of pancreatic islet xenografts in NOD mice with the theracyte device. Transplant Proc. 2002;34:3349–50.

    Article  CAS  PubMed  Google Scholar 

  65. Kumagai-Braesch M, Jacobson S, Mori H, Jia X, Takahashi T, Wernerson A, et al. The TheraCyte™ device protects against islet allograft rejection in immunized hosts. Cell Transplant. 2013;22:1137–46.

    Article  PubMed  Google Scholar 

  66. Boettler T, Schneider D, Cheng Y, Kadoya K, Brandon EP, Martinson L, et al. Pancreatic tissue transplanted in TheraCyte™ encapsulation devices is protected and prevents hyperglycemia in a mouse model of immune-mediated diabetes. Cell Transplant. 2016;25:609–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research was supported by grant from the European Commission H2020 681070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Piemonti.

Ethics declarations

Conflict of Interest

Valeria Sordi, Silvia Pellegrini, and Lorenzo Piemonti declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sordi, V., Pellegrini, S. & Piemonti, L. Immunological Issues After Stem Cell-Based β Cell Replacement. Curr Diab Rep 17, 68 (2017). https://doi.org/10.1007/s11892-017-0901-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0901-4

Keywords

Navigation